药学学报, 2018, 53(11): 1908-1917
引用本文:
李欢, 张娜, 李依民, 黑小斌, 李元敏, 邓翀, 颜永刚, 刘蒙蒙, 张岗. 利用转录组测序挖掘掌叶大黄蒽醌类生物合成相关基因[J]. 药学学报, 2018, 53(11): 1908-1917.
LI Huan, ZHANG Na, LI Yi-min, HEI Xiao-bin, LI Yuan-min, DENG Chong, YAN Yong-gang, LIU Meng-meng, ZHANG Gang. High-throughput transcriptomic sequencing of Rheum palmatum L. seedlings and elucidation of genes in anthraquinone biosynthesis[J]. Acta Pharmaceutica Sinica, 2018, 53(11): 1908-1917.

利用转录组测序挖掘掌叶大黄蒽醌类生物合成相关基因
李欢1, 张娜1,2, 李依民1, 黑小斌1, 李元敏1, 邓翀1, 颜永刚1, 刘蒙蒙2, 张岗1
1. 陕西中医药大学药学院/陕西省中药基础与新药研究重点实验室, 陕西 西安 712046;
2. 江苏理工学院电气信息工程学院生物信息与医药工程研究所, 江苏 常州 213001
摘要:
蒽醌为中药大黄的主要活性成分,也是大黄质量控制的指标成分。为研究大黄蒽醌类生物合成通路,用Illumina HiSeqTM 2000 150PE对掌叶大黄幼苗转录组文库进行高通量测序,得到11.04 G数据,736 309 74条高质量reads(SRA数据库注册号SRP160030)。Trinity do novo组装产生93 646个unigenes,平均长度1 108 nt。功能注释表明所有unigenes在NR、NT、Swiss-port、PFAM、KOG等数据库得到注释,可归为GO分类的生物过程、细胞组分和分子功能3大类57分支,KEGG分析发现1 107条unigenes参与19个次生代谢标准通路。172条unigenes编码蒽醌类生物合成相关的MVA、MEP、莽草酸及聚酮途径28个关键酶。125条CYP450基因可能参与次生代谢物的修饰,73条与糖基转移酶相关。RT-PCR和测序成功验证7个蒽醌及黄酮类候选全长unigenes。MISA还发现18 885个SSRs。该研究首次获得掌叶大黄幼苗转录组基因表达特征及蒽醌类生物合成通路基因,为后续基因功能鉴定、次生代谢途径解析及蒽醌类生物合成与调控分子机制研究提供基础资料。
关键词:   
High-throughput transcriptomic sequencing of Rheum palmatum L. seedlings and elucidation of genes in anthraquinone biosynthesis
LI Huan1, ZHANG Na1,2, LI Yi-min1, HEI Xiao-bin1, LI Yuan-min1, DENG Chong1, YAN Yong-gang1, LIU Meng-meng2, ZHANG Gang1
1. College of Pharmacy and Shaanxi Provincial Key Laboratory for Chinese Medicine Basis & New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an 712046, China;
2. Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
Abstract:
Anthraquinones are not only the main active constituents but also the index components for the quality control of Rhei Radix et Rhizoma. To study the anthraquinone biosynthesis, Rheum palmatum L. seedlings were subjected to a high-throughput transcriptomic sequencing analysis by Illumina HiSeqTM 2000 150PE. The Illumina sequencing generated a total of 11.04 G clean data resulting in 736 309 74 clean reads, deposited in the sequence read archive (SRA accession SRP160030). Trinity do novo assembly yielded 93 646 unigenes, with an average of 1 108 nt. Functional annotation revealed that all unigenes were successfully annotated in the NR, NT, Swiss-port, PFAM, and KOG databases. GO enrichments showed that 57 subgroups were involved in biological process, cellular component, and molecular function. KEGG analysis indicated that 1 107 unigenes were implicated in 19 standard secondary metabolic pathways. 172 unigenes were analyzed to encode 28 key enzymes during the MVA, MEP, shikimic acid, and polyketide pathways related to anthraquinone biosynthesis. 125 CYP450 and 73 UGTs unigenes were related the modification of secondary metabolites in R. palmatum L. Furthermore, seven unigenes with full length cDNAs were successfully verified by RT-PCR and sequencing analyses. Then, MISA prediction produced a number of 18 885 simple sequence repeats (SSRs). Herein, the transcriptomic gene expression profiles of R. palmatum L. and candidate genes during the anthraquinone biosynthesis pathway were obtained for the first time. The results provided basic information for subsequent gene function characterization, secondary metabolic pathway analysis, and anthraquinone biosynthesis and regulation elucidation in R. palmatum L.
Key words:   
收稿日期: 2018-06-11
DOI: 10.16438/j.0513-4870.2018-0547
基金项目: 陕西省高校青年杰出人才支持计划项目;江苏省自然科学基金资助项目(BK20170311);咸阳市中青年科技领军人才项目;陕西中医药大学新进博士科研启动经费(104080001).
通讯作者: 刘蒙蒙,Tel/Fax:86-29-38185165,E-mail:jay_gumling2003@aliyun.com;,E-mail:mmliu1987@sina.com
Email: jay_gumling2003@aliyun.com;mmliu1987@sina.com
相关功能
PDF(511KB) Free
打印本文
0
作者相关文章

参考文献:
[1] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[S]. Part Ⅰ. 2015 ed. Beijing:China Medical Science Press, 2015.
[2] Yi J, Yang JR, Gao F, et al. Emodin enhances arsenic triox-ide-induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling[J]. Cancer Res, 2015, 64:108-116.
[3] He ZH, Zhou R, He M F, et al. Anti-angiogenic effect and mechanism of rhein from Rhizoma Rhei[J]. Phytomedicine, 2011, 18:470-478.
[4] Yang F, Xu Y, Xiong A, et al. Evaluation of the protective effect of Rhei Radix et Rhizoma against α-naphthylisothiocyanate induced liver injury based on metabolic profile of bile acids[J]. J Ethnopharmacol, 2012, 144:599-604.
[5] Zhang XQ, Liu CS, Yan XL, et al. Sequence analysis and identification of a chloroplast matK gene in Rhei Rhizoma from different botanical origins[J]. Acta Pharm Sin (药学学报), 2013, 48:1722-1728.
[6] Lu GD, Li CY, Wang HZ, et al. Analysis on quality of Rheum palmatum L. from Gansu province based on multicriteria method[J]. Chin J Inf TCM (中国中医药信息杂志), 2017, 24:57-63.
[7] Wei WL, Zeng R, Huang LF. Correlation analysis between quality of Rheum palmatum L. and ecological factors[J]. World Sci Technol-Mod of Tradit Chin Med (世界科学技术-中医药现代化), 2015, 17:1849-1854.
[8] Liu J, Liu P, Duan JA, et al. Main components analysis in different parts of Rheum palmatum[J]. Chin Tradit Herb Drugs (中草药), 2017, 48:567-572.
[9] Qi YX, Liu YB, Rong WH. RNA-Seq and its applications:a new technology for transcriptomics[J]. Hereditas (遗传), 2011, 33:1191-1202.
[10] Sui C, Zhang J, Wei J, et al. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins[J]. BMC Genomics, 2011, 12:539.
[11] Jung I, Kang H, Kim JU, et al. The mRNA and miRNA transcriptomic landscape of Panax ginseng under the high ambient temperature[J]. BMC Syst Biol, 2018, 12(Suppl 2):27.
[12] Zhao L, Zhu YH, Zhang L, et al. Transcriptome analysis reveals candidate genes involved in esculentoside A biosynthesis in Phytolacca americana[J]. Acta Pharm Sin (药学学报), 2017, 52:1471-1480.
[13] Yan YG, Yin LM, Wang HY, et al. HPLC method for simultaneous determination of nine components from leaves of Rheum officinale by HPLC[J]. Chin Tradit Herb Drugs (中草药), 2016, 47:2360-2364.
[14] Yamazaki M, Mochida K, Asano T, et al. Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones[J] Plant Cell Physiol, 2013, 54:686-696.
[15] Rama Reddy NR, Mehta RH, Soni PH, et al. Next generation sequencing and transcriptome analysis predicts biosynthetic pathway of sennosides from senna (Cassia angustifolia Vahl.), a non-model plant with potent laxative properties[J]. PLoS One, 2015, 10:e0129422.
[16] Zhang ZB, Hou L, Pan Q, et al. Advances in high-throughput transcriptome research of traditional Chinese medicines[J]. China J Chin Mater Med (中国中药杂志), 2014, 39:1553-1558.
[17] Gross J, Cho WK, Lezhneva L, et al. A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes[J]. J Biol Chem, 2016, 281:17189-17196.
[18] Griffiths S, Mesarich CH, Saccomanno B, et al. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization[J]. Proc Natl Acad Sci U S A, 2016, 113:6851-6856.
[19] Ghimire GP, Koirala N, Pandey RP, et al. Modification of emodin and aloe-emodin by glycosylation in engineered Escherihia coli[J]. World J Microbiol Biotechnol, 2015, 31:611-619.
[20] Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants:features and applications[J]. Trends Biotechnol, 2005, 23:48-55.
[21] Cardle L, Ramsay L, Milbourne D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants[J]. Genetics, 2000, 156:847-854.
[22] Li C, Zhu Y, Guo X, et al. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer[J]. BMC Genomics, 2013, 14:245.