药学学报, 2019, 54(1): 36-40
引用本文:
张宁, 刘洋, 李晔, 胡平. 新型青蒿素衍生物改善溶解度及其抗结核活性研究[J]. 药学学报, 2019, 54(1): 36-40.
ZHANG Ning, LIU Yang, LI Ye, HU Ping. Enhancement of water solubility and anti-tuberculosis activities by a novel artemisinin derivative[J]. Acta Pharmaceutica Sinica, 2019, 54(1): 36-40.

新型青蒿素衍生物改善溶解度及其抗结核活性研究
张宁1, 刘洋2, 李晔2, 胡平1,2
1. 重庆大学药学院, 重庆 401331;
2. 陕西省中医药研究院, 陕西 西安 71000
摘要:
青蒿素及其衍生物已被证明具有抗结核菌活性,但其在水中的低溶解度影响了其药效及适用剂型的制备。本研究设计合成了一个新型的青蒿素衍生物,通过琥珀酸将精氨酸链接到青蒿素分子上,既解决了青蒿素溶解度低的问题,又进一步利用精氨酸对细菌细胞壁的扰乱作用,增强了细菌对精氨酸所携带青蒿素的摄取,从而提高了青蒿素的抗菌效果。结果显示,与青蒿素原型药物相比,合成的青蒿素衍生物A-2A-3在水中的溶解度提高了约19.8~27.8倍。体外细胞毒性证明,质量浓度为1 mg·mL-1的化合物A-3对人白血病单核巨噬细胞无明显细胞毒性。体外抗结核菌实验表明,目标化合物A-2A-3最低抑菌浓度(MIC)分别为20和10 μg·mL-1,相对青蒿素提高了5~10倍。细胞内抑菌实验表明,A-3在较低浓度(100和200 μg·mL-1)下就可显著抑制THP-1巨噬细胞的胞内细菌生长(P<0.05或P<0.01),其作用强于100 μg·mL-1青蒿素(P<0.05)。说明A-3是具有成药潜力的抗结核先导化合物。
关键词:    青蒿素      衍生物      结核病      精氨酸      溶解度     
Enhancement of water solubility and anti-tuberculosis activities by a novel artemisinin derivative
ZHANG Ning1, LIU Yang2, LI Ye2, HU Ping1,2
1. School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China;
2. Shanxi Chinese Medicine Research Institute, Xi'an 710003, China
Abstract:
Artemisinin and its derivatives have been proved for their anti-tuberculosis activities, despite its low water solubility which hampered its efficacy and corresponding formulation development. In this study we designed and synthesized a novel artemisinin analog by conjugating an arginine through a succinic acid linker. This design not only enhanced the water solubility of the artemisinin, but also increased the efficacy of the molecule towards tuberculosis bacteria due to disruption by arginine. The results showed that the solubility of the synthesized derivatives A-2 and A-3 increased 19.8-27.8 folds compared to artemisinin. In vitro cytotoxicity experiment showed that compound A-3 had negligible toxicity to THP-1 cells up to 1 mg·mL-1, the minimal inhibitory concentration (MIC) of A-2 and A-3 was 20 and 10 μg·mL-1, respectively, which was 5 or 10 times lower than that of artemisinin. Intracellular bacteria inhibition experiment showed that compound A-3 at lower concentrations such as 100 or 200 μg·mL-1 significantly inhibited the growth of tuberculosis bacteria (P<0.05 or P<0.01), which efficacy was stronger than artemisinin at the concentration of 100 μg·mL-1. These results strongly suggested that compound A-3 was a potential anti-tuberculosis lead compound.
Key words:    artemisinin    derivative    tuberculosis    arginine    solubility   
收稿日期: 2018-09-25
DOI: 10.16438/j.0513-4870.2018-0876
基金项目: 陕西省中药创新药物研究中心项目(2017YWZX-02).
通讯作者: 李晔,Tel:86-29-87251591,E-mail:liyelsj@163.com;胡平,Tel:18581483142,E-mail:inzahu@hotmail.com
Email: liyelsj@163.com;inzahu@hotmail.com
相关功能
PDF(388KB) Free
打印本文
0
作者相关文章
张宁  在本刊中的所有文章
刘洋  在本刊中的所有文章
李晔  在本刊中的所有文章
胡平  在本刊中的所有文章

参考文献:
[1] Wei FH, Xu LH. Role of autophagy in Mycobacterium tuberculosis infection[J]. Chin J Veter Med (中国兽医杂志), 2018, 54:65-68.
[2] Coll F, Phelan J, Hill-Cawthorne GA, et al. Genome-wide analysis of multi-and extensively drug-resistant Mycobacterium tuberculosis[J]. Nat Genet, 2018, 50:307-316.
[3] Geng YH, Li ZQ. Research progress of the anti-tuberculosis drugs[J]. China Pharm (中国药业), 2016, 25:10-17.
[4] Zhuo WJ, Liu ZH, Qian M, et al.Analysis of rpoB mutation in rifampicine resistant tubercle bacillus with different resistance phenotype to first line antituberculosis drugs[J]. Mod Hosp (现代医院), 2014, 14:4-6.
[5] Chaudhary S, Sharma V, Jaiswal PK, et al. Stable tricyclic antitubercular ozonides derived from artemisinin[J]. Org Lett, 2015, 17:4948-4951.
[6] Choi WH. Novel pharmacological activity of artesunate and artemisinin:their potential as anti-tubercular agents[J]. J Clin Med, 2017, 6:30.
[7] Yang GX, Zheng X, Sun GX, et al. Research progress on artemisinin and its derivatives[J]. World Latest Med Inf (世界最新医学信息文摘), 2013, 13:26-28.
[8] Guo ZR. Development of artemisinin antimalarial drugs[J]. Acta Pharm Sin (药学学报), 2016, 51:157-164.
[9] Wang ZJ, Li YR, Wu WC, et al. Advances in pharmacological studies of artemisinin and its derivatives[J]. Guangxi Med J (广西医学), 2018, 40:1222-1224.
[10] Li B, Zhou H. Advances on the study of the pharmacological effects of artemisinin and its derivatives[J]. Chin J Clin Pharm Therapeut (中国临床药理学与治疗学), 2010, 15:572-576.
[11] Wang J, Zheng CY, Liu L, et al. Progress in synthesis and anticancer activities of artemisinin derivatives[J]. World Notes Antibiot (国外医药-抗生素分册), 2018, 39:68-73.
[12] Li T, Chen H, Liu XG, et al. Immunoregulatory effect of artesunate on allergic contactdermatitis and its mechanism[J]. Acta Pharm Sin (药学学报), 2012, 47:884-889.
[13] Wang CM, Chen J, Jiang M, et al. Relationship between artesunate influence on the process of TGF-β1 induced alveolar epithelial cells transform intomesenchymal cells and on idiopathic pulmonary fibrosis[J]. Acta Pharm Sin (药学学报), 2014, 49:142-147.
[14] Zhan NY, Nie G, Huang HQ, et al. Preliminary study of artesunate and dihydroartemisinin reversing the susceptibility of RFP or INH resistant Mycobacterium tuberculosis[J]. J Sun Yat-sen Univ (中山大学学报), 2009, 30:8-11.
[15] Bai J, Sun HF, Chen XF. Studies on the anti-mycobaterium tuberculosis activity of 4 Chinese medicinal herbs[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2007, 18:77-78.
[16] Ma QQ, Shan AS, Dong N, et al. De novo design of a Leu-Arg-rich antimicrobial peptide[J]. Acta Vet Zootech Sin (畜牧兽医学报), 2011, 42:804-807.
[17] Zhao WC, Han LL, Peng YJ, et al. Effect of basic amino acids on the biological activity of helical antimicrobial peptide[J]. Chem J Chin Univ (高等学校化学学报), 2018, 439:681-687.
[18] He DX, Chen L, Zhao JW, et al. Research trends of aminoglycosides-aminoglycoside derivatives containing guanidyl groups[J]. World Notes Antibiot (国外医药-抗生素分册), 2006, 27:79-83.
[19] Zhou FW, Lei HS, Fan L, et al. Design, synthesis, and biological evaluation of dihydroartemisinin-fluoroquinolone conjugates as a novel type of potential antitubercular agents[J]. Bioorg Med Chem Lett, 2014, 24:1912-1917.
[20] Bardts M, Ritter H. Novel copolymers showing interactions of amidinium-carboxylate groups in water[J]. J Polym Res, 2011, 18:151-155.
相关文献:
1.马超, 李学强, 徐建, 陈凑喜.新型双氢青蒿素哌嗪-磺酰胺类化合物的合成、结构及生物活性[J]. 药学学报, 2013,48(9): 1430-1435
2.马超, 李学强, 徐建, 陈凑喜.新型双氢青蒿素哌嗪-磺酰胺类化合物的合成、结构及生物活性[J]. 药学学报, 2013,48(9): 1430-1435
3.张建新;王峻霞;张瑜;左建平;吴锦明;隋毅;李英.具有免疫抑制作用的含有聚乙二醇基的青蒿素衍生物的合成[J]. 药学学报, 2006,41(1): 65-70
4.虞佩琳;陈一心;李英;嵇汝运.青蒿素类似物的研究 Ⅳ.含卤素、氮、硫等杂原子的青蒿素衍生物的合成[J]. 药学学报, 1985,20(5): 357-365