药学学报, 2019, 54(2): 269-280
引用本文:
蔡颖, 陈阳, 周雯婷, 廖跃华, 洪战英, 柴逸峰. 基于微流控芯片的体外血脑屏障模型构建与应用研究进展[J]. 药学学报, 2019, 54(2): 269-280.
CAI Ying, CHEN Yang, ZHOU Wen-ting, LIAO Yue-hua, HONG Zhan-ying, CHAI Yi-feng. Research advancement in the construction and applications of microfluidic devices for in vitro blood-brain barrier research[J]. Acta Pharmaceutica Sinica, 2019, 54(2): 269-280.

基于微流控芯片的体外血脑屏障模型构建与应用研究进展
蔡颖1,2, 陈阳1, 周雯婷1, 廖跃华3, 洪战英1, 柴逸峰1
1. 第二军医大学药学院, 上海 200433;
2. 福建中医药大学药学院, 福建 福州 350122;
3. 上海健康医学院, 上海 201318
摘要:
血脑屏障(blood-brain barrier,BBB)能控制血脑两侧的物质转运,保证中枢神经组织内环境的稳定,对神经系统疾病药物的研发有着重要的影响。建立体外高保真BBB模型对BBB功能进行研究,对药物、毒素等的屏障渗透性的评估等具有重要意义。然而,BBB结构的复杂性导致其难以在体外较好的复制,BBB芯片可以使系统微型化、减少细胞和培养基用量,同时可以诱导剪切力产生,与传统体外BBB模型相比具有一定优势。本文对BBB芯片模型的建立,模型的表征方法及其在神经炎症、脑肿瘤研究和药物评价方面的应用进行综述,为建立更可靠的体外BBB模型提供参考。
关键词:    血脑屏障      微流控芯片      模型建立      表征方法      应用     
Research advancement in the construction and applications of microfluidic devices for in vitro blood-brain barrier research
CAI Ying1,2, CHEN Yang1, ZHOU Wen-ting1, LIAO Yue-hua3, HONG Zhan-ying1, CHAI Yi-feng1
1. School of Pharmacy, Second Military Medical University, Shanghai 200433, China;
2. School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
3. Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
Abstract:
The blood-brain barrier (BBB) not only maintains the stability of the environment within the central nervous system by controlling the transport of substances on both sides of the blood and brain, but also plays an important role in the R&D of new drugs for neurological disorders. The establishment of an in vitro high-fidelity model to study BBB function is imperative for assessing barrier permeability of drugs and xenobiotics. However, the complexity of the BBB structure makes it difficult to replicate with an in vitro model. Compared to the traditional in vitro BBB model, the BBB-on-chip provides certain advantages in miniaturizing the system, reducing the amount of cells and medium required, and allowing simultaneously induction of shear stress. We review here the BBB-on-chip models from their establishment and characterization to applications in research of neuroinflammation, brain tumor and drug evaluation.
Key words:    blood-brain barrier    microfluidic chip    model establishment    characterization    application   
收稿日期: 2018-08-23
DOI: 10.16438/j.0513-4870.2018-0773
基金项目: 国家自然科学基金资助项目(81373376,81872829).
通讯作者: 洪战英,Tel:86-21-81871261-85,E-mail:hongzhy001@163.com
Email: hongzhy001@163.com
相关功能
PDF(664KB) Free
打印本文
0
作者相关文章
蔡颖  在本刊中的所有文章
陈阳  在本刊中的所有文章
周雯婷  在本刊中的所有文章
廖跃华  在本刊中的所有文章
洪战英  在本刊中的所有文章
柴逸峰  在本刊中的所有文章

参考文献:
[1] Dong XP, Yu B, Jin L, et al. Advance on study of cells of blood-brain barrier[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2012, 18:281-284.
[2] Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease[J]. Pharmacol Rev, 2005, 57:173-185.
[3] Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier:molecular anatomy and possible investigation approaches[J]. Brain Res Rev, 2010, 64:328-363.
[4] Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier[J]. Neurobiol Dis, 2010, 37:13-25.
[5] Chen LJ, Lu CT, Zhao YZ, et al. Ultrasonic microbubbles for glioma-targeted drug delivery[J]. Acta Pharm Sin (药学学报), 2015, 50:99-103.
[6] Kingwell K. Drug delivery:new targets for drug delivery across the BBB[J]. Nat Rev Drug Discov, 2016, 15:84-85.
[7] Banks WA. From blood-brain barrier to blood-brain interface:new opportunities for CNS drug delivery[J]. Nat Rev Drug Discov, 2016, 15:275-292.
[8] Khawli LA, Prabhu S. Drug delivery across the blood-brain barrier[J]. Mol Pharm, 2013, 10:1471-1472.
[9] Fan JX, Wang S, Meng XS, et al. Study of cancer cell apoptosis induced by Schizonepeta tenuifolia with microfluidic chip technology[J]. Acta Pharm Sin (药学学报), 2017, 52:126-131.
[10] Yum K, Hong SG, Healy KE, et al. Physiologically relevant organs on chips[J]. Biotechnol J, 2014, 9:16-27.
[11] Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips[J]. Trends Cell Biol, 2011, 21:745-754.
[12] Luissint AC, Federici C, Guillonneau F, et al. Guanine nucleotide-binding protein Gαi2:a new partner of claudin-5 that regulates tight junction integrity in human brain endothelial cells[J]. J Cereb Blood Flow Metab, 2012, 32:860-873.
[13] Huber JD, Witt KA, Hom S, et al. Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression[J]. Am J Physiol Heart Circ Physiol, 2001, 280:H1241-1248.
[14] Huber JD, Egleton RD, Davis TP. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier[J]. Trends Neurosci, 2001, 24:719-725.
[15] Sang J, Liu P, Zhao BQ. Molecular composition of blood-brain barrier:research advances[J]. J Int Pharm Res (国际药学研究杂志), 2011, 38:201-205.
[16] Serlin Y, Shelef I, Knyazer B, et al. Anatomy and physiology of the blood-brain barrier[J]. Semin Cell Dev Biol, 2015, 38:2-6.
[17] Kuhnline Sloan CD, Nandi P, Linz TH, et al. Analytical and biological methods for probing the blood-brain barrier[J]. Annu Rev Anal Chem (Palo Alto Calif), 2012, 5:505-531.
[18] Abbott NJ, Dolman DE, Patabendige AK. Assays to predict drug permeation across the blood-brain barrier, and distribution to brain[J]. Curr Drug Metab, 2008, 9:901-910.
[19] Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB)[J]. Lab Chip, 2012, 12:1784-1792.
[20] Wolff A, Antfolk M, Brodin B, et al. In vitro blood-brain barrier models-an overview of established models and new microfluidic approaches[J]. J Pharm Sci, 2015, 104:2727-2746.
[21] Huh D, Torisawa YS, Hamilton GA, et al. Microengineered physiological biomimicry:organs-on-chips[J]. Lab Chip, 2012, 12:2156-2164.
[22] Cucullo L, Aumayr B, Rapp E, et al. Drug delivery and in vitro models of the blood-brain barrier[J]. Curr Opin Drug Discov Devel, 2005, 8:89-99.
[23] Santaguida S, Janigro D, Hossain M, et al. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro:a permeability study[J]. Brain Res, 2006, 1109:1-13.
[24] Cucullo L, McAllister MS, Kight K, et al. A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier[J]. Brain Res, 2002, 951:243-254.
[25] Neuhaus W, Lauer R, Oelzant S, et al. A novel flow based hollow-fiber blood-brain barrier in vitro model with immortalised cell line PBMEC/C1-2[J]. J Biotechnol, 2006, 125:127-141.
[26] Frampton JP, Shuler ML, Shain W, et al. Biomedical technologies for in vitro screening and controlled delivery of neuroactive compounds[J]. Cent Nerv Syst Agents Med Chem, 2008, 8:203-219.
[27] Modarres HP, Janmaleki M, Novin M, et al. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain[J]. J Control Release, 2018, 273:108-130.
[28] Liu Q, Wu C, Cai H, et al. Cell-based biosensors and their application in biomedicine[J]. Chem Rev, 2014, 114:6423-6461.
[29] Kim JA, Kim HN, Im SK, et al. Collagen-based brain microvasculature model in vitro using three-dimensional printed template[J]. Biomicrofluidics, 2015, 9:024115.
[30] Marino A, Tricinci O, Battaglini M, et al. A 3D real-scale, biomimetic, and biohybrid model of the blood-brain barrier fabricated through two-photon lithography[J]. Small, 2018, 14:1870024.
[31] Cho H, Seo JH, Wong KH, et al. Three-dimensional blood-brain barrier model for in vitro studies of neurovascular pathology[J]. Sci Rep, 2015, 5:15222.
[32] Jeong S, Kim S, Buonocore J, et al. A three-dimensional arrayed microfluidic blood-brain barrier model with integrated electrical sensor array[J]. IEEE Trans Biomed Eng, 2018, 65:431-439.
[33] Falanga AP, Pitingolo G, Celentano M, et al. Shuttle-mediated nanoparticle transport across an in vitro brain endothelium under flow conditions[J]. Biotechnol Bioeng, 2017, 114:1087-1095.
[34] Prabhakarpandian B, Shen MC, Nichols JB, et al. SyM-BBB:a microfluidic blood brain barrier model[J]. Lab Chip, 2013, 13:1093-1101.
[35] Adriani G, Ma D, Pavesi A, et al. A 3D neurovascular microfluidic model consisting of neurons, astrocytes and cerebral endothelial cells as a blood-brain barrier[J]. Lab Chip, 2017, 17:448-459.
[36] Brown JA, Codreanu SG, Shi M, et al. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit[J]. J Neuroinflammation, 2016, 13:306.
[37] Brown JA, Pensabene V, Markov DA, et al. Recreating blood-brain barrier physiology and structure on chip:a novel neurovascular microfluidic bioreactor[J]. Biomicrofluidics, 2015, 9:054124.
[38] Walter FR, Valkai S, Kincses A, et al. A versatile lab-on-a-chip tool for modeling biological barriers[J]. Sens Actuators B Chem, 2016, 222:1209-1219.
[39] Campisi M, Shin Y, Osaki T, et al. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes[J]. Biomaterials, 2018, 180:117-129.
[40] Maoz BM, Herland A, FitzGerald EA. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells[J]. Nat Biotechnol, 2018, 36:865-874.
[41] Sellgren KL, Hawkins BT, Grego S. An optically transparent membrane supports shear stress studies in a three-dimensional microfluidic neurovascular unit model[J]. Biomicrofluidics, 2015, 9:061102.
[42] Bernas MJ, Cardoso FL, Daley SK, et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier[J]. Nat Protoc, 2010, 5:1265-1272.
[43] Abbott NJ, Dolman DE, Drndarski S, et al. An improved in vitro blood-brain barrier model:rat brain endothelial cells co-cultured with astrocytes[J]. Methods Mol Biol, 2012, 814:415-430.
[44] Navone SE, Marfia G, Invernici G, et al. Isolation and expansion of human and mouse brain microvascular endothelial cells[J]. Nat Protoc, 2013, 8:1680-1693.
[45] Merkel SF, Andrews AM, Lutton EM, et al. Trafficking of AAV vectors across a model of the blood-brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells[J]. J Neurochem, 2016, 140:216-230.
[46] Partyka PP, Godsey GA, Galie JR, et al. Mechanical stress regulates transport in a compliant 3D model of the blood-brain barrier[J]. Biomaterials, 2017, 115:30-39.
[47] Deosarkar SP, Prabhakarpandian B, Wang B, et al. A novel dynamic neonatal blood-brain barrier on a chip[J]. PLoS One, 2015, 10:e0142725.
[48] Herland A,van der Meer AD, FitzGerald EA, et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip[J]. PLoS One, 2016, 11:e0150360.
[49] Thomsen LB, Burkhart A, Moos T. A triple culture model of the blood-brain barrier using porcine brain endothelial cells, astrocytes and pericytes[J]. PLoS One, 2015, 10:e0134765.
[50] Sorokin L. The impact of the extracellular matrix on inflammation[J]. Nat Rev Immunol, 2010, 10:712-723.
[51] Yousif LF, Di Russo J, Sorokin L. Laminin isoforms in endothelial and perivascular basement membranes[J]. Cell Adh Migr, 2013, 7:101-110.
[52] Zhuang QC, Ning RZ, Ma Y, et al. Recent development in microfluidic chips for in vitro cell-based research[J]. Chin J Anal Chem (分析化学), 2016, 44:522-532.
[53] Achyuta AK, Conway AJ, Crouse RB, et al. A modular approach to create a neurovascular unit-on-a-chip[J]. Lab Chip, 2013, 13:542-553.
[54] Lin LY, Lin JM. Development of cell culture and analysis on microfluidic devices[J]. J Anal Sci (分析科学学报), 2017, 33:707-714.
[55] He Z, Zhang W, Mao S, et al. Shear stress-enhanced internalization of cell membrane proteins indicated by a hairpin-type DNA probe[J]. Anal Chem, 2018, 90:5540-5545.
[56] Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium:pathophysiological basis and clinical perspectives[J]. Physiol Rev, 2011, 91:327-387.
[57] Balaguru UM, Sundaresan L, Manivannan J, et al. Disturbed flow mediated modulation of shear forces on endothelial plane:a proposed model for studying endothelium around atherosclerotic plaques[J]. Sci Rep, 2016, 6:27304.
[58] van der Meer AD, Poot AA, Feijen J, et al. Analyzing shear stress-induced alignment of actin filaments in endothelial cells with a microfluidic assay[J]. Biomicrofluidics, 2010, 4:11103.
[59] Shemesh J, Jalilian I, Shi A, et al. Flow-induced stress on adherent cells in microfluidic devices[J]. Lab Chip, 2015, 15:4114-4127.
[60] Cucullo L, Couraud PO, Weksler B, et al. Immortalized human brain endothelial cells and flow-based vascular modeling:a marriage of convenience for rational neurovascular studies[J]. J Cereb Blood Flow Metab, 2008, 28:312-328.
[61] Wang YI,Abaci HE, Shuler ML. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening[J]. Biotechnol Bioeng, 2017, 114:184-194.
[62] Wang JD, El-S Khafagy, Khanafer K, et al. Organization of endothelial cells, pericytes, and astrocytes into a 3D microfluidic in vitro model of the blood-brain barrier[J]. Mol Pharm, 2016, 13:895-906.
[63] Booth R, Kim H. Permeability analysis of neuroactive drugs through a dynamic microfluidic in vitro blood-brain barrier model[J]. Ann Biomed Eng, 2014, 42:2379-2391.
[64] Griep LM, Wolbers F, de Wagenaar B, et al. BBB on chip:microfluidic platform to mechanically and biochemically modulate blood-brain barrier function[J]. Biomed Microdevices, 2013, 15:145-150.
[65] Yeon JH, Na D, Choi K, et al. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures[J]. Biomed Microdevices, 2012, 14:1141-1148.
[66] Andrews AM, Lutton EM, Cannella LA, et al. Characterization of human fetal brain endothelial cells reveals barrier properties suitable for in vitro modeling of the BBB with syngenic co-cultures[J]. J Cereb Blood Flow Metab, 2018, 38:888-903.
[67] Shao X, Gao D, Chen Y, et al. Development of a blood-brain barrier model in a membrane-based microchip for characterization of drug permeability and cytotoxicity for drug screening[J]. Anal Chim Acta, 2016, 934:186-193.
[68] Bang S, Lee SR, Ko J, et al. A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes[J]. Sci Rep, 2017, 7:8083.
[69] Srinivasan B, Kolli AR, Esch MB, et al. TEER measurement techniques for in vitro barrier model systems[J]. J Lab Autom, 2015, 20:107-126.
[70] Odijk M,van der Meer AD, Levner D, et al. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems[J]. Lab Chip, 2015, 15:745-752.
[71] Thuenauer R, Rodriguez-Boulan E, Romer W. Microfluidic approaches for epithelial cell layer culture and characterisation[J]. Analyst, 2014, 139:3206-3218.
[72] Benson K, Cramer S, Galla HJ. Impedance-based cell monitoring:barrier properties and beyond[J]. Fluids Barriers CNS, 2013, 10:5.
[73] Abbott NJ. Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro and in silico models[J]. Drug Discov Today Technol, 2004, 1:407-416.
[74] Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease[J]. Nat Rev Immunol, 2014, 14:463-477.
[75] Shumakovich MA, Mencio CP, Siglin JS, et al. Astrocytes from the brain microenvironment alter migration and morphology of metastatic breast cancer cells[J]. FASEB J, 2017, 10.1096/fj. 201700254R.
[76] Tourovskaia A, Fauver M, Kramer G, et al. Tissue-engineered microenvironment systems for modeling human vasculature[J]. Exp Biol Med (Maywood), 2014, 239:1264-1271.
[77] Xu H, Li Z, Yu Y, et al. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors[J]. Sci Rep, 2016, 6:36670.
[78] Xu H, Li Z, Guo Y, et al. Probing the response of lung tumor cells to inflammatory microvascular endothelial cells on fluidic microdevice[J]. Electrophoresis, 2017, 38:311-319.
[79] Terrell-Hall TB, Ammer AG,Griffith JI, et al. Permeability across a novel microfluidic blood-tumor barrier model[J]. Fluids Barriers CNS, 2017, 14:3.
[80] Terrell-Hall TB,Nounou MI, El-Amrawy F, et al. Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer[J]. Oncotarget, 2017, 8:83734-83744.