药学学报, 2019, 54(3): 393-398
安妮, 衣岽戎, 李晓宇, 岑山. 脂滴代谢与丙型肝炎病毒生活周期关联的研究进展[J]. 药学学报, 2019, 54(3): 393-398.
AN Ni, YI Dong-rong, LI Xiao-yu, CEN Shan. Progress in the study of the association between the lipid droplets and hepatitis C virus life cycle[J]. Acta Pharmaceutica Sinica, 2019, 54(3): 393-398.

安妮, 衣岽戎, 李晓宇, 岑山
中国医学科学院、北京协和医学院医药生物技术研究所, 北京 100050
脂滴(lipid droplets,LDs)是广泛存在的动态细胞器,它们在所有真核细胞和部分原核细胞中储存和供应脂质,用于能量代谢与脂膜合成等。越来越多的证据表明,丙型肝炎病毒(hepatitis C virus,HCV)由于自身缺乏脂质生物合成途径而发生了进化,使其能够利用宿主脂质代谢途径,建立适宜自身增殖的环境而获得必要的成分,最终促进病毒组装和运输。本文主要对HCV生活周期与脂滴生物合成及代谢之间的关联做一综述,以期为HCV引起的相关疾病及其治疗的研究提供线索。
关键词:    脂滴      丙型肝炎病毒      脂代谢      黄病毒      脂滴相关蛋白     
Progress in the study of the association between the lipid droplets and hepatitis C virus life cycle
AN Ni, YI Dong-rong, LI Xiao-yu, CEN Shan
Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Lipid droplets (LDs) are ubiquitous dynamic organelles that store and supply lipids in all eukaryotic and some prokaryotic cells for energy metabolism, membrane synthesis and production of essential lipid-derived molecules. There is increasing evidence that hepatitis C virus (HCV) has co-evolved due to its lack of lipid biosynthetic pathways to utilize host lipid metabolic pathways to establish a suitable environment for virus proliferation and obtain the necessary components, eventually promote the assembly and transportation of virus. In this review, we outline the relationship between HCV life cycle and lipid droplet biosynthesis and metabolism, with the aim to discover potential antiviral targets for development of new therapeutic interventions.
Key words:    lipid droplet    hepatitis C virus    lipid metabolism    flaviviridae    lipid droplets-associated protein   
收稿日期: 2018-09-19
DOI: 10.16438/j.0513-4870.2018-0867
基金项目: 国家自然科学基金委面上项目(81772205);国家重点研发计划重点专项(2016YFD0500307).
通讯作者: 岑山
Email: shancen@hotmail.com
PDF(390KB) Free
安妮  在本刊中的所有文章
衣岽戎  在本刊中的所有文章
李晓宇  在本刊中的所有文章
岑山  在本刊中的所有文章

[1] Lavanchy D. Evolving epidemiology of hepatitis C virus[J]. Clin Microbiol Infect, 2011, 17:107-115.
[2] Jiang Z, Li YP, Li ZR. Research progress of anti-HIV and HCV drugs targeting host cellular factors[J]. Chin J New Drugs (中国新药杂志), 2014, 23:665-673.
[3] Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism[J]. Annu Rev Biochem, 2012, 81:687-714.
[4] Paul D, Madan V, Bartenschlager R. Hepatitis C virus RNA replication and assembly:living on the fat of the land[J]. Cell Host Microbe, 2014, 16:569-579.
[5] Thiam AR, Farese RV Jr, Walther TC. The biophysics and cell biology of lipid droplets[J]. Nat Rev Mol Cell Biol, 2013, 14:775-786.
[6] Tauchi-Sato K, Ozeki S, Houjou T, et al. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition[J]. J Biol Chem, 2002, 277:44507-44512.
[7] Pol A, Martin S, Fernandez MA, et al. Dynamic and regulated association of caveolin with lipid bodies:modulation of lipid body motility and function by a dominant negative mutant[J]. Mol Biol Cell, 2004, 15:99-110.
[8] Zimmermann R, Strauss JG, Haemmerle G, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase[J]. Science, 2004, 306:1383-1386.
[9] Brasaemle DL. Thematic review series:adipocyte biology. The perilipin family of structural lipid droplet proteins:stabilization of lipid droplets and control of lipolysis[J]. J Lipid Res, 2007, 48:2547-2559.
[10] Ouimet M, Marcel YL. Regulation of lipid droplet cholesterol efflux from macrophage foam cells[J]. Arterioscler Thromb Vasc Biol, 2012, 32:575-581.
[11] Heaton NS, Randall G. Dengue virus-induced autophagy regulates lipid metabolism[J]. Cell Host Microbe, 2010, 8:422-432.
[12] Velikkakath AK, Nishimura T, Oita E, et al. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets[J]. Mol Biol Cell, 2012, 23:896-909.
[13] Saka HA, Valdivia R. Emerging roles for lipid droplets in immunity and host-pathogen interactions[J]. Annu Rev Cell Dev Biol, 2012, 28:411-437.
[14] Welte MA. Expanding roles for lipid droplets[J]. Curr Biol, 2015, 25:R470-R481.
[15] Pol A, Gross SP, Parton RG. Review:biogenesis of the multifunctional lipid droplet:lipids, proteins, and sites[J]. J Cell Biol, 2014, 204:635-646.
[16] Gao Q, Goodman JM. The lipid droplet-a well-connected organelle[J]. Front Cell Dev Biol, 2015, 3:49.
[17] Spandl J, Lohmann D, Kuerschner L, et al. Ancient ubiquitous protein 1(AUP1) localizes to lipid droplets and binds the E2 ubiquitin conjugase G2(Ube2g2) via its G2 binding region[J]. J Biol Chem, 2011, 286:5599-5606.
[18] Jo Y, Hartman IZ, DeBose-Boyd RA. Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet-associated endoplasmic reticulum membranes[J]. Mol Biol Cell, 2013, 24:169-183.
[19] Evans MJ, Rice CM, Goff SP. Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication[J]. Proc Natl Acad Sci U S A, 2004, 101:13038-13043.
[20] Daniel F, Zhang J, Matthew A, et al. The lipid droplet-associated protein perilipin 3 facilitates hepatitis C virus-driven hepatic steatosis[J]. J Lipid Res, 2017, 58:420-432.
[21] Ana F, John M. Hepatitis C virus and lipid droplets:finding a niche[J]. Trends Mol Med, 2015, 21:34-42.
[22] Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease[J]. Nature, 2005, 438:612-621.
[23] Moriishi K, Mochizuki R, Moriya K, et al. Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis[J]. Proc Natl Acad Sci U S A, 2007, 104:1661-1666.
[24] Su AI, Pezacki JP, Wodicka L, et al. Genomic analysis of the host response to hepatitis C virus infection[J]. Proc Natl Acad Sci U S A, 2002, 99:15669-15674.
[25] Dharancy S, Malapel M, Perlemuter G, et al. Impaired expression of the peroxisome proliferator-activated receptor alpha during hepatitis C virus infection[J]. Gastroenterology, 2005, 128:334-342.
[26] Mankouri J, Tedbury PR, Gretton S, et al. Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase[J]. Proc Natl Acad Sci U S A, 2010, 107:11549-11554.
[27] McLauchlan J, Lemberg MK, Hope G, et al. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets[J]. EMBO J, 2002, 21:3980-3988.
[28] Boulant S, Douglas MW, Moody L, et al. Hepatitis C virus core protein induces lipid droplet redistribution in a microtubule-and dynein-dependent manner[J]. Traffic, 2008, 9:1268-1282.
[29] Nada M, Radwa Y, Shereen A, et al. Epigenetic harnessing of HCV via modulating the lipid droplet-protein,TIP47, in HCV cell models[J]. FEBS Lett, 2015, 589:2266-2273.
[30] Lavie M, Dubuisson J. Interplay between hepatitis C virus and lipid metabolism during virus entry and assembly[J]. Biochimie, 2017, 141:62-69.
[31] Martins AS, Martins IC, Santos NC. Methods for lipid droplet biophysical characterization in flaviviridae infections[J]. Front Microbiol, 2018, 9:1951.
[32] Targett-Adams P, Hope G, Boulant S, et al. Maturation of hepatitis C virus core protein by signal peptide peptidase is required for virus production[J]. J Biol Chem, 2008, 283:16850-16859.
[33] Shavinskaya A, Boulant S, Penin F, et al. The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly[J]. J Biol Chem, 2007, 282:37158-37169.
[34] Lin CC, Tsai P, Sun HY, et al. Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis C virus virion production[J]. J Hepatol, 2014, 61:984-993.
[35] Nathan L, Krystal A, Kumar G, et al. Entangled in a membranous web:ER and lipid droplet reorganization during hepatitis C virus infection[J]. Curr Opin Cell Biol, 2016, 41:117-124.
[36] Andre P, Komurian-Pradel F, Deforges S, et al. Characterization of low-and very-low-density hepatitis C virus RNA-containing particles[J]. J Virol, 2002, 76:6919-6928.
[37] Nielsen SU, Bassendine MF, Burt AD, et al. Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients[J]. J Virol, 2006, 80:2418-2428.
[38] Miyanari Y, Atsuzawa K, Usuda N, et al. The lipid droplet is an important organelle for hepatitis C virus production[J]. Nat Cell Biol, 2007, 9:1089-1097.
[39] Daniela P, Mohamed LH, Kiyoshi H, et al. TIP47 is associated with the Hepatitis C virus and its interaction with Rab9 is required for release of viral particles[J]. Eur J Cell Biol, 2013, 92:374-382.
[40] Ando T, Imamura H, Suzuki R, et al. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA[J]. PLoS Pathog, 2012, 8:e1002561.
[41] Heaton NS, Perera R, Berger KL, et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis[J]. Proc Natl Acad Sci U S A, 2010, 107:17345-17350.
[42] Perera R, Riley C, Isaac G, et al. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells[J]. PLoS Pathog, 2012, 8:e1002584.
[43] Olmstead AD, Knecht W, Lazarov I, et al. Human subtilase SKI-1/S1P is a master regulator of the HCV lifecycle and a potential host cell target for developing indirect-acting antiviral agents[J]. PLoS Pathog, 2012, 8:e1002468.
[44] Romero-Brey I, Merz A, Chiramel A, et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication[J]. PLoS Pathog, 2012, 8:e1003056.
[45] Wang H, Perry JW, Lauring AS, et al. Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking[J]. Gastroenterology, 2014, 146:1373-1385.
[46] Weng L, Hirata Y, Arai M, et al. Sphingomyelin activates hepatitis C virus RNA polymerase in a genotype-specific manner[J]. J Virol, 2010, 84:11761-11770.
[47] Hirata Y, Ikeda K, Sudoh M, et al. Self-enhancement of hepatitis C virus replication by promotion of specific sphingolipid biosynthesis[J]. PLoS Pathog, 2012, 8:e1002860.
[48] McIntosh AL, Storey SM, Atshaves BP. Intracellular lipid droplets contain dynamic pools of sphingomyelin:ADRP binds phospholipids with high affinity[J]. Lipids, 2010, 45:465-477.
[49] Yang W, Hood BL, Chadwick SL, et al. Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production[J]. Hepatology, 2008, 48:1396-1403.
[50] Sagan SM, Rouleau Y, Leggiadro C, et al. The influence of cholesterol and lipid metabolism on host cell structure and hepatitis C virus replication[J]. Biochem Cell Biol, 2006, 84:67-79.
[51] Delang L, Paeshuyse J, Vliegen I, et al. Statins potentiate the in vitro anti-hepatitis C virus activity of selective hepatitis C virus inhibitors and delay or prevent resistance development[J]. Hepatology, 2009, 50:6-16.
[52] Harris C, Herker E, Farese RV Jr, et al. Hepatitis C virus core protein decreases lipid droplet turnover:a mechanism for core-induced steatosis[J]. J Biol Chem, 2011, 286:42615-42625.
[53] Jiang XB, Li YP, Li ZR. Research progress of HCV NS5A complex inhibitors[J]. Acta Pharm Sin (药学学报), 2016, 51:1378-1387.