药学学报, 2019, 54(3): 399-406
引用本文:
赵喆, 鲍秀琦, 张丹. 铁死亡调控机制及其在帕金森病中的研究进展[J]. 药学学报, 2019, 54(3): 399-406.
ZHAO Zhe, BAO Xiu-qi, ZHANG Dan. Mechanisms of ferroptosis and its involvement in Parkinson's disease[J]. Acta Pharmaceutica Sinica, 2019, 54(3): 399-406.

铁死亡调控机制及其在帕金森病中的研究进展
赵喆, 鲍秀琦, 张丹
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050
摘要:
铁死亡是一种新型的细胞程序性死亡方式,其形态、生化特征及作用机制均不同于凋亡、自噬、坏死、焦亡等已知的细胞死亡形式。铁死亡的调控机制主要涉及铁代谢、氨基酸代谢及脂质代谢。已有研究发现铁死亡在神经、肿瘤、缺血再灌注损伤等疾病的发生发展中起关键作用。帕金森病(Parkinson's disease,PD)是中枢神经系统最常见的神经退行性疾病之一,其病因及发病机制尚未阐明。近期研究发现,PD患者中脑处具有高铁、低还原型谷胱甘肽及高过氧化脂质等特点,提示PD发病机制与铁死亡密切相关。在PD中,一些铁死亡抑制剂表现出缓解疾病的能力,其中一种铁离子螯合剂已进入临床试验阶段。本文系统总结铁死亡的主要调控机制并梳理其与PD的联系,为治疗PD提供新的潜在靶点。
关键词:    铁死亡      帕金森病      铁代谢      还原型谷胱甘肽      脂质过氧化     
Mechanisms of ferroptosis and its involvement in Parkinson's disease
ZHAO Zhe, BAO Xiu-qi, ZHANG Dan
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Natural Products and Functions, Beijing 100050, China
Abstract:
Ferroptosis is a novel type of regulated cell death with morphology, biochemistry and mechanisms differing from traditional cell death types such as apoptosis, necrosis and pyroptosis. The regulatory mechanisms of ferroptosis mainly involve iron metabolism, amino acid metabolism and lipid metabolism. It has been found that ferroptosis plays a key role in the pathogenesis of diseases including neurodegenerative diseases, malignant tumors and ischemic reperfusion injury. Parkinson's disease (PD) is one of the most common neurodegenerative diseases and its etiology and pathogenesis remains unclear. Recent studies revealed that ferroptosis might be involved in the pathogenesis of PD, as evidenced by high iron content, depletion of reduced form of glutathione and elevated levels of lipid peroxides detectable in the midbrain of PD patients. Both in vitro and in vivo models of PD have shown that some ferroptosis inhibitors have the ability of attenuating the symptoms and one iron chelator is undergoing a clinic trial. We here summarize the mechanisms of ferroptosis and its association with PD, in an effort to suggest potential novel targets for therapies of PD.
Key words:    ferroptosis    Parkinson's disease    iron metabolism    reduced glutathione    lipid peroxidation   
收稿日期: 2018-10-24
DOI: 10.16438/j.0513-4870.2018-0966
基金项目: 国家自然科学基金资助项目(81630097,81773718);中国医学科学院医学与健康科技创新工程资助项目(2016-I2M-3-011).
通讯作者: 张丹
Email: danzhang@imm.ac.cn
相关功能
PDF(432KB) Free
打印本文
0
作者相关文章
赵喆  在本刊中的所有文章
鲍秀琦  在本刊中的所有文章
张丹  在本刊中的所有文章

参考文献:
[1] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149:1060-1072.
[2] Rinaldi DE, Corradi GR, Cuesta LM, et al. The Parkinson-associated human P5B-ATPase ATP13A2 protects against the iron-induced cytotoxicity[J]. Biochim Biophys Acta, 2015, 1848:1646-1655.
[3] Trinh K, Moore K, Wes PD, et al. Induction of the phase Ⅱ detoxification pathway suppresses neuron loss in Drosophila models of Parkinson's disease[J]. J Neurosci, 2008, 28:465-472.
[4] Liddell JR, Obando D, Liu J, et al. Lipophilic adamantyl-or deferasirox-based conjugates of desferrioxamine B have enhanced neuroprotective capacity:implications for Parkinson disease[J]. Free Radic Biol Med, 2013, 60:147-156.
[5] Brenner S. Parkinson's disease may be due to failure of melanin in the substantia nigra to produce molecular hydrogen from dissociation of water, to protect the brain from oxidative stress[J]. Med Hypotheses, 2014, 82:503.
[6] Gao HM, Zhou H, Hong JS. NADPH oxidases:novel therapeutic targets for neurodegenerative diseases[J]. Trends Pharmacol Sci, 2012, 33:295-303.
[7] Ahmed I, Bose SK, Pavese N, et al. Glutamate NMDA receptor dysregulation in Parkinson's disease with dyskinesias[J]. Brain, 2011, 134:979-986.
[8] Amalric M. Targeting metabotropic glutamate receptors (mGluRs) in Parkinson's disease[J]. Curr Opin Pharmacol, 2015, 20:29-34.
[9] Buchanan RJ, Gjini K, Darrow D, et al. Glutamate and GABA concentration changes in the globus pallidus internus of Parkinson's patients during performance of implicit and declarative memory tasks:a report of two subjects[J]. Neurosci Lett, 2015, 589:73-78.
[10] Chotibut T, Davis RW, Arnold JC, et al. Ceftriaxone increases glutamate uptake and reduces striatal tyrosine hydroxylase loss in 6-OHDA Parkinson's model[J]. Mol Neurobiol, 2014, 49:1282-1292.
[11] Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death:recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25:486-541.
[12] Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death:recommendations of the Nomenclature Committee on Cell Death 2009[J]. Cell Death Differ, 2009, 16:3-11.
[13] Yu HM, Wang M, Mao ZF, et al. The prospects of ferroptosis in the pathogenesis of liver disease[J]. Acta Pharm Sin (药学学报), 2017, 52:1783-1790.
[14] Trump BF, Berezesky IK, Chang SH, et al. The pathways of cell death:oncosis, apoptosis, and necrosis[J]. Toxicol Pathol, 1997, 25:82-88.
[15] Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens[J]. Immunol Rev, 2015, 265:130-142.
[16] Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15:234-245.
[17] Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59:298-308.
[18] Mancias JD, Wang X, Gygi SP, et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 2014, 509:105-109.
[19] Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process[J]. Cell Res, 2016, 26:1021-1032.
[20] Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12:1425-1428.
[21] Sun X, Ou Z, Xie M, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death[J]. Oncogene, 2015, 34:5617-5625.
[22] Yuan H, Li X, Zhang X, et al. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation[J]. Biochem Biophys Res Commun, 2016, 478:838-844.
[23] Ursini F, Maiorino M, Valente M, et al. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides[J]. Biochim Biophys Acta, 1982, 710:197-211.
[24] Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156:317-331.
[25] Viswanathan VS, Ryan MJ, Dhruv HD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway[J]. Nature, 2017, 547:453-457.
[26] Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis:a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171:273-285.
[27] Sato H, Tamba M, Ishii T, et al. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins[J]. J Biol Chem, 1999, 274:11455-11458.
[28] Yang WS, Kim KJ, Gaschler MM, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016, 113:E4966-E4975.
[29] Yehuda S, Rabinovitz S, Carasso RL, et al. The role of polyunsa-turated fatty acids in restoring the aging neuronal membrane[J]. Neurobiol Aging, 2002, 23:843-853.
[30] Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13:81-90.
[31] Dixon SJ,Winter GE, Musavi LS, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10:1604-1609.
[32] Yuan H, Li X, Zhang X, et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis[J]. Biochem Biophys Res Commun, 2016, 478:1338-1343.
[33] Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13:91-98.
[34] Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence:the influence of LCPUFA on neural development, aging, and neurodegeneration[J]. Prog Lipid Res, 2014, 53:1-17.
[35] Zucca FA, Segura-Aguilar J, Ferrari E, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson's disease[J]. Prog Neurobiol, 2017, 155:96-119.
[36] Hernandez DG, Reed X, Singleton AB. Genetics in Parkinson disease:Mendelian versus non-Mendelian inheritance[J]. J Neurochem, 2016, 139 Suppl 1:59-74.
[37] Mastrangelo L. The genetics of Parkinson disease[J]. Adv Genet, 2017, 98:43-62.
[38] Yan MH, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease[J]. Free Radic Biol Med, 2013, 62:90-101.
[39] Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration[J]. Antioxid Redox Signal, 2014, 20:353-371.
[40] Burbulla LF, Song P, Mazzulli JR, et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease[J]. Science, 2017, 357:1255-1261.
[41] Sherer TB, Betarbet R, Kim JH, et al. Selective microglial activation in the rat rotenone model of Parkinson's disease[J]. Neurosci Lett, 2003, 341:87-90.
[42] Brodacki B, Staszewski J, Toczylowska B, et al. Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFα, and INFγ concentrations are elevated in patients with atypical and idiopathic parkinsonism[J]. Neurosci Lett, 2008, 441:158-162.
[43] Zheng YP, Zang CX, Wang L, et al. Lipopolysaccharide potentiates dopaminergic neuronal dysfunction in α-synuclein transgenic mice[J]. Acta Pharm Sin (药学学报), 2017, 52:729-736.
[44] Powers KM, Smith-Weller T, Franklin GM, et al. Dietary fats, cholesterol and iron as risk factors for Parkinson's disease[J]. Parkinsonism Relat Disord, 2009, 15:47-52.
[45] Jiang H, Wang J, Rogers J, et al. Brain iron metabolism dysfunction in Parkinson's disease[J]. Mol Neurobiol, 2017, 54:3078-3101.
[46] Devos D, Moreau C, Devedjian JC, et al. Targeting chelatable iron as a therapeutic modality in Parkinson's disease[J]. Antioxid Redox Signal, 2014, 21:195-210.
[47] Bar-Am O, Amit T, Kupershmidt L, et al. Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson's disease and aging[J]. Neurobiol Aging, 2015, 36:1529-1542.
[48] Rhodes SL, Buchanan DD, Ahmed I, et al. Pooled analysis of iron-related genes in Parkinson's disease:association with transferrin[J]. Neurobiol Dis, 2014, 62:172-178.
[49] Osaki S, Johnson DA, Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum[J]. J Biol Chem, 1966, 241:2746-2751.
[50] Duce JA, Tsatsanis A, Cater MA, et al. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease[J]. Cell, 2010, 142:857-867.
[51] Lei P, Ayton S,Finkelstein DI, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export[J]. Nat Med, 2012, 18:291-295.
[52] Ayton S, Lei P, Hare DJ, et al. Parkinson's disease iron deposition caused by nitric oxide-induced loss of beta-amyloid precursor protein[J]. J Neurosci, 2015, 35:3591-3597.
[53] Golts N, Snyder H, Frasier M, et al. Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein[J]. J Biol Chem, 2002, 277:16116-16123.
[54] Peng Y, Wang C, Xu HH, et al. Binding of alpha-synuclein with Fe(Ⅲ) and with Fe(Ⅱ) and biological implications of the resultant complexes[J]. J Inorg Biochem, 2010, 104:365-370.
[55] Ostrerova-Golts N, Petrucelli L, Hardy J, et al. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity[J]. J Neurosci, 2000, 20:6048-6054.
[56] Friedlich AL, Tanzi RE, Rogers JT. The 5'-untranslated region of Parkinson's disease alpha-synuclein messenger RNA contains a predicted iron responsive element[J]. Mol Psychiatry, 2007, 12:222-223.
[57] Febbraro F, Giorgi M, Caldarola S, et al. alpha-Synuclein expression is modulated at the translational level by iron[J]. Neuroreport, 2012, 23:576-580.
[58] Jenner P, Dexter DT, Sian J, et al. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson's Disease Research Group[J]. Ann Neurol, 1992, 32 Suppl:S82-S87.
[59] Van Laar VS, Roy N, Liu A, et al. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy[J]. Neurobiol Dis, 2015, 74:180-193.
[60] Song H, Kim W, Kim SH, et al. VRK3-mediated nuclear localization of HSP70 prevents glutamate excitotoxicity-induced apoptosis and Aβ accumulation via enhancement of ERK phosphatase VHR activity[J]. Sci Rep, 2016, 6:38452.
[61] Zhang Y, He X, Meng X, et al. Regulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson's disease model[J]. Cell Death Dis, 2017, 8:e2574.
[62] Savaskan NE, Heckel A, Hahnen E, et al. Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema[J]. Nat Med, 2008, 14:629-632.
[63] Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease[J]. J Neurochem, 1989, 52:381-389.
[64] Dexter D, Carter C, Agid F, et al. Lipid peroxidation as cause of nigral cell death in Parkinson's disease[J]. Lancet, 1986, 2:639-640.
[65] Kim JH, Lewin TM, Coleman RA. Expression and characterization of recombinant rat Acyl-CoA synthetases 1, 4, and 5. Selective inhibition by triacsin C and thiazolidinediones[J]. J Biol Chem, 2001, 276:24667-24673.
[66] Brauer R, Bhaskaran K, Chaturvedi N, et al. Glitazone treatment and incidence of Parkinson's disease among people with diabetes:a retrospective cohort study[J]. PLoS Med, 2015, 12:e1001854.
[67] Do Van B, Gouel F, Jonneaux A, et al. Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC[J]. Neurobiol Dis, 2016, 94:169-178.
[68] JPF Angeli, Shah R, Pratt DA, et al. Ferroptosis inhibition:mechanisms and opportunities[J]. Trends Pharmacol Sci, 2017, 38:489-498.
[69] Liu Y, Wang W, Li Y, et al. The 5-lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis[J]. Biol Pharm Bull, 2015, 38:1234-1239.
[70] Zilka O, Shah R, Li B, et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death[J]. ACS Cent Sci, 2017, 3:232-243.