药学学报, 2019, 54(3): 440-447
引用本文:
赵欢乐, 梁菊, 吴文澜, 李军波. 酸敏感多肽在药物递送方面的作用机制及其应用[J]. 药学学报, 2019, 54(3): 440-447.
ZHAO Huan-le, LIANG Ju, WU Wen-lan, LI Jun-bo. Mechanism and application of acid-sensitive peptides in drug delivery[J]. Acta Pharmaceutica Sinica, 2019, 54(3): 440-447.

酸敏感多肽在药物递送方面的作用机制及其应用
赵欢乐1, 梁菊1, 吴文澜2, 李军波1
1. 河南科技大学化工与制药学院, 河南 洛阳 471023;
2. 河南科技大学医学院, 河南 洛阳 471023
摘要:
作为一类新型的递送载体,多肽具有丰富的生物活性、较低的免疫原性及良好的生物相容性,近年来利用多肽递送药物或基因的研究得到广泛关注。其中,具有酸敏感性的多肽,在肿瘤微环境或溶酶体的弱酸性条件下可以产生二级结构的改变。因此,将酸敏感多肽作为递送载体,或将其修饰在其他载体上,负载药物后形成的纳米组装体可以在肿瘤组织中定点释放药物,促进药物的细胞内化,增强药物的治疗效果。目前发现酸敏感多肽种类较多,多肽的氨基酸侧链、极性氨基酸数量、氨基酸序列及肽链二级结构都可以影响其酸敏感性。本文列举了近年来文献中报道的酸敏感多肽类型,分析了多肽的结构与其酸敏感性之间的关系,并介绍了酸敏感多肽及其修饰载体在药物递送方面的作用机制和应用,为更好地开发和利用酸敏感多肽,实现药物的高效递送提供参考。
关键词:    多肽      酸敏感性      载体      药物递送      肿瘤      纳米组装体     
Mechanism and application of acid-sensitive peptides in drug delivery
ZHAO Huan-le1, LIANG Ju1, WU Wen-lan2, LI Jun-bo1
1. Chemical Engineering and Pharmaceutics School, Henan University of Science and Technology, Luoyang 471023, China;
2. Medical School, Henan University of Science and Technology, Luoyang 471023, China
Abstract:
As a part of novel drug delivery carriers, peptides have diverse biological activities, low immunogenicity and good biocompatibility. In recent years, studies on the delivery carriers modified by peptides have attracted much attention. Among them, the peptides with acid sensitivity can change their secondary structures under slightly acidic microenvironment of the tumor or in lysosome. Therefore, the carriers made or modified by acid-sensitive peptides can specifically release the loaded drug in the tumor tissue, enhance the cell internalization of drugs and improve its therapeutic effects. In accordance with acid-sensitive peptides studied, the side chains, number of polar residues, sequence and secondary structure of the peptides might be involved in the acid sensitivity. In this review, we summarize the acid-sensitive peptides from recent literatures, analyze the connection between the structure and the acid sensitivity, and focus on the mechanism and application of acid-sensitive peptides in drug delivery. This provides the basis for further development and utilization for acid-sensitive peptides for efficient drug delivery.
Key words:    peptide    acid sensitivity    carrier    drug delivery    tumor    nano-assemblies   
收稿日期: 2018-08-31
DOI: 10.16438/j.0513-4870.2018-0799
基金项目: 国家自然科学基金青年科学基金资助项目(51403055).
通讯作者: 梁菊
Email: liangju@haust.edu.cn
相关功能
PDF(445KB) Free
打印本文
0
作者相关文章
赵欢乐  在本刊中的所有文章
梁菊  在本刊中的所有文章
吴文澜  在本刊中的所有文章
李军波  在本刊中的所有文章

参考文献:
[1] Aluri S, Janib SM, Mackay JA. Environmentally responsive peptides as anticancer drug carriers[J]. Adv Drug Deliv Rev, 2009, 61:940-952.
[2] MacEwan SR, Callahan DJ, Chilkoti A. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery[J]. Nanomedicine, 2010, 5:793-806.
[3] Vlieghe P, Lisowski V, Martinez J, et al. Synthetic therapeutic peptides:science and market[J]. Drug Discov Today, 2010, 15:40-56.
[4] Craik DJ, Fairlie DP, Liras S, et al. The future of peptide-based drugs[J]. Chem Biol Drug Des, 2013, 81:136-147.
[5] Lee S, Xie J, Chen XY. Peptide-based probes for targeted molecular imaging[J]. Biochemistry, 2010, 49:1364-1376.
[6] Li ZJ, Cho CH. Development of peptides as potential drugs for cancer therapy[J]. Curr Pharm Design, 2010, 16:1180-1189.
[7] Estroff LA, Hamilton AD. Water gelation by small organic molecules[J]. Chem Rev, 2004, 104:1201-1218.
[8] Zhang W, Song JJ, Zhang BZ, et al. Design of acid-activated cell penetrating peptide for delivery of active molecules into cancer cells[J]. Bioconjugate Chem, 2011, 22:1410-1415.
[9] Shi KR, Li JP, Cao ZL, et al. A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin ανβ3 for the treatment of melanoma[J]. J Control Release, 2015, 217:138-150.
[10] Sun YX, Zhang XZ. Cholesteryl pH-responsive cell-penetrating peptide for co-delivery of drug and gene[J]. J Control Release, 2017, 259:E185-E185.
[11] Guo XD, Zhang LJ, Chen Y, et al. Core/shell pH-sensitive micelles self-assembled from cholesterol conjugated oligopeptides for anticancer drug delivery[J]. Aiche J, 2010, 56:1922-1931.
[12] Jiang TY, Zhang ZH, Zhang YL, et al. Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery[J]. Biomaterials, 2012, 33:9246-9258.
[13] Liang J, Wu WL, Xu XD, et al. pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier[J]. Colloid Surf B, 2014, 114:398-403.
[14] Schneider JP, Pochan DJ, Ozbas B, et al. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide[J]. J Am Chem Soc, 2002, 124:15030-15037.
[15] Chang C, Liang PQ, Chen LL, et al. pH-responsive nanoparticle assembly from peptide amphiphiles for tumor targeting drug delivery[J]. J Biomater Sci Polym Ed, 2017, 28:1338-1350.
[16] Kang YJ, Zhou XR, Luo SZ. Synthesis and characterization of a pH-responsive amphiphilic peptide hydrogel composed of pal-RLRRLRARARA[J]. China Sciencepaper (中国科技论文), 2012, 7:437-441.
[17] Fei LK, Yap LP, Conti PS, et al. Tumor targeting of a cell penetrating peptide by fusing with a pH-sensitive histidine-glutamate co-oligopeptide[J]. Biomaterials, 2014, 35:4082-4087.
[18] Haas DH, Murphy RM. Design of a pH-sensitive pore-forming peptide with improved performance[J]. J Pept Res, 2004, 63:9-16.
[19] Wei YS, Liao RF, Mahmood AA, et al. pH-responsive pHLIP (pH low insertion peptide) nanoclusters of superparamagnetic iron oxide nanoparticles as a tumor-selective MRI contrast agent[J]. Acta Biomater, 2017, 55:194-203.
[20] Wyatt LC, Moshnikova A, Crawford T, et al. Peptides of pHLIP family for targeted intracellular and extracellular delivery of cargo molecules to tumors[J]. Proc Natl Acad Sci U S A, 2018, 115:E2811-E2818.
[21] Xu XD, Chu YF, Chen CS, et al. Facile construction of nanofibers as a functional template for surface boron coordination reaction[J]. Small, 2011, 7:2201-2209.
[22] Tian L, Bae YH. Cancer nanomedicines targeting tumor extracellular pH[J]. Colloid Surf B, 2012, 99:116-126.
[23] Toriyabe N, Hayashi Y, Harashima H. The transfection activity of R8-modified nanoparticles and siRNA condensation using pH sensitive stearylated-octahistidine[J]. Biomaterials, 2013, 34:1337-1343.
[24] Wu H, Zhu L, Torchilin VP. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery[J]. Biomaterials, 2013, 34:1213-1222.
[25] Midoux P, Pichon C, Yaouanc JJ, et al. Chemical vectors for gene delivery:a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers[J]. Br J Pharmacol, 2009, 157:166-178.
[26] Zhao BX, Zhao Y, Huang Y, et al. The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel[J]. Biomaterials, 2012, 33:2508-2520.
[27] Zhang QY, Tang J, Fu L, et al. A pH-responsive alpha-helical cell penetrating peptide-mediated liposomal delivery system[J]. Biomaterials, 2013, 34:7980-7993.
[28] Singh RS, Goncalves C, Sandrin P, et al. On the gene delivery efficacies of pH-sensitive cationic lipids via endosomal protonation:a chemical biology investigation[J]. Chem Biol, 2004, 11:713-723.
[29] Moreira C, Oliveira H, Pires LR, et al. Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone[J]. Acta Biomater, 2009, 5:2995-3006.
[30] Ma YY, Li L, Huang HF, et al. Advances of tumor targeting peptides drug delivery system with pH-sensitive activities[J]. Acta Pharm Sin (药学学报), 2016, 51:717-724.
[31] Dehsorkhi A, Castelletto V, Hamley IW, et al. The effect of pH on the self-assembly of a collagen derived peptide amphiphile[J]. Soft Matter, 2013, 9:6033-6036.
[32] Wan YM, Liu LB, Yuan SS, et al. pH-responsive peptide supramolecular hydrogels with antibacterial activity[J]. Langmuir, 2017, 33:3234-3240.
[33] Huang HH, Li JY, Liao LH, et al. Poly(L-glutamic acid)-based star-block copolymers as pH-responsive nanocarriers for cationic drugs[J]. Eur Polym J, 2012, 48:696-704.
[34] Ding JX, He CL, Xiao CS, et al. pH-responsive drug delivery systems based on clickable poly(L-glutamic acid)-grafted comb copolymers[J]. Macromol Res, 2012, 20:292-301.
[35] Liu LH, Li ZY, Rong L, et al. Self-assembly of hybridized peptide nucleic acid amphiphiles[J]. ACS Macro Lett, 2014, 3:467-471.
[36] Itoh T, Tamamitsu T, Shimomoto H, et al. Surface structure and composition of narrowly-distributed functional polystyrene particles prepared by dispersion polymerization with poly(L-glutamic acid) macromonomer as stabilizer[J]. Polymer, 2015, 70:183-193.
[37] Andreev OA, Karabadzhak AG, Weerakkody D, et al. pH (low) insertion peptide (pHLIP) inserts across a lipid bilayer as a helix and exits by a different path[J]. Proc Natl Acad Sci U S A, 2010, 107:4081-4086.
[38] Reshetnyak YK, Andreev OA, Segala M, et al. Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane[J]. Proc Natl Acad Sci U S A, 2008, 105:15340-15345.
[39] Deacon JC, Engelman DM, Barrera FN. Targeting acidity in diseased tissues:mechanism and applications of the membrane-inserting peptide, pHLIP[J]. Arch Biochem Biophys, 2015, 565:40-48.
[40] Musial-Siwek M, Karabadzhak A, Andreev OA, et al. Tuning the insertion properties of pHLIP[J]. Biochim Biophys Acta, 2010, 1798:1041-1046.
[41] Burns KE, McClérey TP, Thevenin D. pH-selective cytotoxicity of pHLIP-antimicrobial peptide conjugates[J]. Sci Rep, 2016, 6:28465.
[42] Zaro JL, Fei LK, Shen WC. Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery[J]. J Control Release, 2012, 158:357-361.
[43] Sun CM, Shen WC, Tu JS, et al. Interaction between cell-penetrating peptides and acid-sensitive anionic oligopeptides as a model for the design of targeted drug carriers[J]. Mol Pharm, 2014, 11:1583-1590.
[44] Ouahab A, Cheraga N, Onoja V, et al. Novel pH-sensitive charge-reversal cell penetrating peptide conjugated PEG-PLA micelles for docetaxel delivery:in vitro study[J]. Int J Pharm, 2014, 466:233-245.
[45] Li W, Nicol F, Szoka FC Jr. GALA:a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery[J]. Adv Drug Deliv Rev, 2004, 56:967-985.
[46] Kakudo T, Chaki S, Futaki S, et al. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide:an artificial viral-like delivery system[J]. Biochemistry, 2004, 43:5618-5628.
[47] Schach DK, Rock W, Franz J, et al. Reversible activation of a cell-penetrating peptide in a membrane environment[J]. J Am Chem Soc, 2015, 137:12199-12202.
[48] Parente RA, Nir S,Szoka FC Jr. Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA[J]. Biochemistry, 1990, 29:8720-8728.
[49] Nouri FS, Wang X, Dorrani M, et al. A recombinant biopolymeric platform for reliable evaluation of the activity of pH-responsive amphiphile fusogenic peptides[J]. Biomacromolecules, 2013, 14:2033-2040.
[50] Yu PH, Liang J, Zhao HL, et al. Advances in peptide-modified pH-sensitive liposomes[J]. Chin Pharm J (中国药学杂志), 2018, 53:849-853.
相关文献:
1.胥海婷, 吴亿晗, 石金凤, 李佳鑫, 章津铭, 傅超美.基于纳米共载策略的光热治疗联合化疗抗肿瘤研究进展[J]. 药学学报, 2020,55(8): 1774-1783
2.沈莉莉, 王姣姣, 陈吴越, 周婧, 马宏跃, 许惠琴, 程海波, 陆茵, 段金廒.抗肿瘤多肽的高效筛选方法及研究现状[J]. 药学学报, 2020,55(10): 2298-2305
3.邸金威, 杜祎萌, 高翔, 张慧, 刘楠, 郑爱萍, 高静.逐层自组装技术在药物递送中的研究进展[J]. 药学学报, 2020,55(11): 2595-2605
4.胡川, 高会乐.肿瘤微环境响应性与调节性递药系统研究进展[J]. 药学学报, 2020,55(7): 1520-1527
5.张盈盈, 陈丽青, 刘璇, 辛欣, 孟令玮, 金明姬, 高钟镐, 黄伟.外泌体作为药物递送载体的研究进展[J]. 药学学报, 2019,54(6): 1010-1016
6.张佳, 赵婷, 敦洁宁, 孙明贤, 黄荣荣, 向柏, 白靖, 曹德英.门控型药物递送系统研究进展[J]. 药学学报, 2019,54(6): 1017-1025
7.喻兆阳, 薛慧颖, 裘琳, 刘异, 李娟.脂质-中空介孔硅联合递送盐酸多柔比星及miR-375治疗肝癌的研究[J]. 药学学报, 2019,54(1): 151-158
8.刘薇, 陈丽青, 辛欣, 黄伟, 高钟镐.抗肿瘤抗生素药物制剂的研究进展[J]. 药学学报, 2018,53(6): 865-877
9.李梦茹, 李腾, 莫然.胰腺癌靶向纳米递药系统的研究进展[J]. 药学学报, 2018,53(7): 1090-1099
10.杨丽萍, 曹丽, 赵婷, 杜青, 曹德英, 向柏, 谢俊霞.多功能信封型纳米系统的研究进展[J]. 药学学报, 2018,53(1): 47-53
11.贾学丽, 张佳, 赵婷, 杜青, 曹德英, 向柏, 耿革霞, 齐宪荣.低pH插入肽研究概况[J]. 药学学报, 2018,53(3): 375-382
12.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报, 2017,52(7): 1110-1116
13.李曼, 杨玉婷, 何勤, 张志荣.纳米载体在肿瘤免疫治疗中的研究进展[J]. 药学学报, 2017,52(12): 1839-1848
14.唐嘉婧, 梅凌, 余倩雯, 何勤.载吲哚菁绿和多柔比星自组装胶束的构建及体外抗肿瘤及其转移的评价[J]. 药学学报, 2017,52(12): 1933-1941
15.张美, 李光伟.纤维连接蛋白B结构域的生物学特征及其靶向药物开发[J]. 药学学报, 2017,52(8): 1216-1221
16.罗林明, 楚世峰, 姜懿纳, 罗飘, 陈乃宏.神经干细胞治疗胶质瘤的研究进展[J]. 药学学报, 2017,52(4): 510-516
17.樊敦, 余敬谋, 黄皓, 金一.环境响应性递释系统在基因与药物共传递应用中的研究进展[J]. 药学学报, 2017,52(5): 713-721
18.尹晓兰, 张波, 刘永军, 张娜.聚合物药物结合物胶束在抗肿瘤药物递送方面的研究进展[J]. 药学学报, 2016,51(5): 710-716
19.马银云, 李莉, 黄海凤, 缑三虎, 倪京满.肿瘤靶向型pH敏感多肽类药物递送系统研究进展[J]. 药学学报, 2016,51(5): 717-724
20.范博, 金明姬, 黄伟, 王启明, 高钟镐.细胞穿膜肽在药物递送系统中的研究进展[J]. 药学学报, 2016,51(2): 264-271
21.周洁雨, 张兰, 毛世瑞.蛋白及多肽药物干粉吸入剂研究新进展[J]. 药学学报, 2015,50(7): 814-823
22.李伟男, 徐琪, 王艳宏, 陈大为.聚(β-氨基酯)肿瘤靶向给药系统的研究进展[J]. 药学学报, 2015,50(4): 434-439
23.王 昕, 滕兆刚, 黄小银, 卢光明.介孔二氧化硅纳米粒传递肿瘤诊疗药物的研究进展[J]. 药学学报, 2013,48(1): 8-13
24.陈伟光, 王士斌.纳米载体共载基因与化疗药物用于癌症治疗的研究进展[J]. 药学学报, 2013,48(7): 1091-1098
25.张添源, 胡瑜兰, 梁文权, 高建青.基因重组间充质干细胞作为肿瘤靶向细胞载体的研究进展[J]. 药学学报, 2013,48(8): 1209-1220
26.邱立朋, 龙苗苗, 陈大为.透明质酸肿瘤靶向给药系统的研究进展[J]. 药学学报, 2013,48(9): 1376-1382
27.吴 旭,高 波,杨 健,边宝林,王宏洁.华蟾素注射液多肽成分体外抗肿瘤活性研究[J]. 药学学报, 2012,47(6): 822-826
28.高 凯, 毕 华, 丁有学, 李永红, 韩春梅, 郭 莹, 饶春明.重组复制型溶瘤腺病毒p53的质量控制方法[J]. 药学学报, 2011,46(12): 1476-1482
29.胡海洋;陈大为;刘彦仿;乔明曦;赵秀丽.蜂毒多肽空间稳定免疫脂质体的制备及体外对肿瘤细胞的选择性[J]. 药学学报, 2007,42(11): 1201-1205
30.李靖;程桂芳;王文杰;白金叶.5种炎性刺激剂对小鼠腹腔巨噬细胞生成肿瘤坏死因子的影响[J]. 药学学报, 2000,35(1): 60-62
31.钟飞;李晓玉;杨胜利.酪-D-丙-甘-苯丙-D-亮(DADL)五肽的固相合成及对免疫功能的影响[J]. 药学学报, 1995,30(2): 93-97
32.李述文;郑亚平;高怡生.放线菌素类似物的合成Ⅳ——2-氨基-4,6-二甲基吩(口恶)嗪酮-(3)-1,9-双多肽的合成[J]. 药学学报, 1982,17(5): 338-343
33.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报,