药学学报, 2019, 54(3): 454-462
引用本文:
周游, 王艳林, 孙丽丹, 曹春雨, 杨建林. 新型精胺氧化酶小分子抑制剂SI-4650抗人骨肉瘤活性及分子机制研究[J]. 药学学报, 2019, 54(3): 454-462.
ZHOU You, WANG Yan-lin, SUN Li-dan, CAO Chun-yu, YANG Jian-lin. Anti-osteosarcoma activity and underlying molecular mechanism of a novel small molecule spermine oxidase inhibitor SI-4650[J]. Acta Pharmaceutica Sinica, 2019, 54(3): 454-462.

新型精胺氧化酶小分子抑制剂SI-4650抗人骨肉瘤活性及分子机制研究
周游, 王艳林, 孙丽丹, 曹春雨, 杨建林
三峡大学医学院, 肿瘤微环境与免疫治疗湖北省重点实验室, 湖北 宜昌 443002
摘要:
SI-4650是本实验室新近发现的一种新型精胺氧化酶(spermine oxidase,SMO)小分子抑制剂,本研究的目的是进一步探究SI-4650对人骨肉瘤143B细胞增殖、迁移能力的影响及其分子机制。研究利用化学发光法和高效液相色谱法分析SI-4650对143B细胞中SMO活性的影响;DIOC6(3)探针染色/流式细胞术分析细胞中活性氧的堆积水平;MTT法和流式细胞术检测SI-4650对细胞增殖和周期的影响;Transwell法和Western blot分析细胞迁移相关蛋白的表达;PI/FITC-Annexin V双染、倒置荧光显微镜观察和Western blot法分析细胞凋亡和自噬。结果显示,SI-4650可显著性抑制人骨肉瘤143B细胞内SMO酶活性,高效抑制143B细胞的增殖和迁移能力,并引起S期周期阻滞,其机制可能与干扰多胺代谢、活化线粒体介导的细胞凋亡途径和引起自噬性死亡相关。上述研究结果提示,SI-4650具有用于人骨肉瘤临床治疗的潜在价值。
关键词:    多胺代谢      精胺氧化酶抑制剂      人骨肉瘤细胞      细胞增殖      迁移      凋亡      自噬     
Anti-osteosarcoma activity and underlying molecular mechanism of a novel small molecule spermine oxidase inhibitor SI-4650
ZHOU You, WANG Yan-lin, SUN Li-dan, CAO Chun-yu, YANG Jian-lin
Medical College of China Three Gorges University, Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Yichang 443002, China
Abstract:
The purpose of this study is to further explore the effects of SI-4650, a newly discovered small molecule inhibitor of spermine oxidase (SMO) in our laboratory, on proliferation and migration of human osteosarcoma 143B cells and its underlying molecular mechanism. Chemiluminescence and high performance liquid chromatograph were used to analyze the effect of SI-4650 on SMO activity in 143B cells. DCFH-DA-staining/FCM was used to analyze the accumulation of cellular reactive oxygen species (ROS), whereas MTT and FCM were used to detect proliferation and cell cycle. Transwell culture and Western blot were used to analyze the expression levels of migration-related proteins. PI/FITC-Annexin V/FCM, fluorescence microscopy and Western blot were used to analyze apoptosis and autophagy. Our results showed that SI-4650 could significantly decrease SMO activity, inhibit cell proliferation or migration, and induce a S-phase cell cycle arrest in 143B human osteosarcoma cells. The mechanism may be related to interfering with polyamine metabolism, activating mitochondrial-mediated apoptosis and causing autophagic death. These results suggest that SI-4650 has the potential for clinical use in treatment of osteosarcoma.
Key words:    polyamine metabolism    spermine oxidase inhibitor    human osteosarcoma cell    cell proliferation    migration    apoptosis    autophagy   
收稿日期: 2018-11-22
DOI: 10.16438/j.0513-4870.2018-1055
基金项目: 国家自然科学基金资助项目(81372265,30772590);肿瘤微环境与免疫治疗湖北省重点实验室开放基金项目(2016KZL01,2016KZL04).
通讯作者: 杨建林
Email: 435203858@qq.com
相关功能
PDF(822KB) Free
打印本文
0
作者相关文章
周游  在本刊中的所有文章
王艳林  在本刊中的所有文章
孙丽丹  在本刊中的所有文章
曹春雨  在本刊中的所有文章
杨建林  在本刊中的所有文章

参考文献:
[1] Amendola R, Cervelli M, Fratini E, et al. Spermine metabolism and anticancer therapy[J]. Curr Cancer Drug Targets, 2009, 9:118-130.
[2] Battaglia V, DeStefano Shields C, Murray-Stewart T, et al. Polyamine catabolism in carcinogenesis:potential targets for chemotherapy and chemoprevention[J]. Amino Acids, 2014, 46:511-519.
[3] Miller-Fleming L, Olin-Sandoval V, Campbell K, et al. Remaining mysteries of molecular biology:the role of polyamines in the cell[J]. J Mol Biol, 2015, 427:3389-3406.
[4] Zhou Y, Cao CY, Wang YL. Advances in targeting of anti-cancer drugs based on polyamine transport system[J]. Chem Life (生命的化学), 2018, 38:543-550.
[5] Casero RA Jr, Murray Stewart T, Pegg AE. Polyamine metabolism and cancer:treatments, challenges and opportunities[J]. Nat Rev Cancer, 2018, 18:681-695.
[6] Cervelli M, Salvi D, Polticelli F, et al. Structure-function relationships in the evolutionary framework of spermine oxidase[J]. J Mol Evol, 2013, 76:365-370.
[7] Wang Y, Devereux W, Woster PM, et al. Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure[J]. Cancer Res, 2001, 61:5370-5373.
[8] Nowotarski SL, Woster PM,Casero RA Jr. Polyamines and cancer:implications for chemotherapy and chemoprevention[J]. Expert Rev Mol Med, 2013, 15:e3
[9] Cervelli M, Amendola R, Polticelli F, et al. Spermine oxidase:ten years after[J]. Amino Acids, 2012, 42:441-450.
[10] Goodwin AC, Jadallah S, Toubaji A, et al. Increased spermine oxidase expression in human prostate cancer and prostatic intraepithelial neoplasia tissues[J]. Prostate, 2008, 68:766-772.
[11] Murray-Stewart T, Sierra JC, Piazuelo MB, et al. Epigenetic silencing of miR-124 prevents spermine oxidase regulation:implications for Helicobacter pylori-induced gastric cancer[J]. Oncogene, 2016, 35:5480-5488.
[12] Goodwin AC,Destefano Shields CE, Wu S, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis[J]. Proc Natl Acad Sci U S A, 2011, 108:15354-15359.
[13] Murray-Stewart TR, Woster PM, Casero RA Jr. Targeting polyamine metabolism for cancer therapy and prevention[J]. Biochem J, 2016, 473:2937-2953.
[14] Moriya S, Iwasaki K, Samejima K, et al. A mass spectrometric method to determine activities of enzymes involved in polyamine catabolism[J]. Anal Chim Acta, 2012, 748:45-52.
[15] Seiler N, Renault J, Gosse F, et al. Cytotoxicity of the polyamine oxidase inactivator MDL 72527 to cancer cells:comparison with a saturated structural analogue[J]. Int J Oncol, 2005, 27:1669-1676.
[16] Goodwin AC, Murray-Stewart TR,Casero RA Jr. A simple assay for mammalian spermine oxidase:a polyamine catabolic enzyme implicated in drug response and disease[J]. Methods Mol Biol, 2011, 720:173-181.
[17] Wu TT, Du R, Li LF, et al. Detection of reactive oxygen species of human dental pulp cells by flow cytometry[J]. Shanghai J Stomatol (上海口腔医学), 2012, 21:617-621.
[18] Danylovich GV, Danylovich Iu V, Gorchev VF. Comparative investigation by spectrofluorimetry and flow cytometry of plasma and inner mitochondrial membranes polarisation in smooth muscle cell using potential-sensitive probe DiOC6(3)[J]. Ukr Biokhim Zh, 2011, 83:99-105.
[19] Shaikh AB, Li F, Li M, et al. Present advances and future perspectives of molecular targeted therapy for osteosarcoma[J]. Int J Mol Sci, 2016, 17:506.
[20] Tang Q, Bu W, Wang D. Advance research on interaction between autophagy and apoptosis and its influence in development of tumors[J]. J Jilin Univ (Med Sci Ed)(吉林大学学报:医学版), 2015, 41:1303-1306.
[21] Choi AM, Ryter SW, Levine B. Autophagy in human health and disease[J]. N Engl J Med, 2013, 368:1845-1846.
[22] Jiang P, Mizushima N. Autophagy and human disease[J]. Cell Res, 2014, 24:69-79.
[23] Mizushima N, Komatsu M. Autophagy:renovation of cells and tissues[J]. Cell, 2011, 147:728-741.
[24] Chen HY, Huang TC, Shieh TM, et al. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth[J]. Int J Mol Sci, 2017, 18:2025.
[25] Li CJ, Liao WT, Wu MY, et al. New insights into the role of autophagy in tumor immune microenvironment[J]. Int J Mol Sci, 2017, 18:1566-1570.
[26] Liu H, Shao RG. The regulatory role of autophagy in tumor process[J]. Acta Pharm Sin (药学学报), 2016, 51:23-28.
[27] Zhou J, Wang J, Zhang N, et al. Identification of biomechanical force as a novel inducer of epithelial-mesenchymal transition features in mechanical stretched skin[J]. Am J Transl Res, 2015, 7:2187-2198.
[28] Yang G, Yuan J, Li K. EMT transcription factors:implication in osteosarcoma[J]. Med Oncol, 2013, 30:697-701.
[29] Yan S, Holderness BM, Li Z, et al. Epithelial-mesenchymal expression phenotype of primary melanoma and matched metastases and relationship with overall survival[J]. Anticancer Res, 2016, 36:6449-6456.
[30] Feng M, Feng J, Chen W, et al. Lipocalin2 suppresses metastasis of colorectal cancer by attenuating NF-kappaB-dependent activation of snail and epithelial mesenchymal transition[J]. Mol Cancer, 2016, 15:77-80.