药学学报, 2019, 54(3): 482-493
引用本文:
史海龙, 冯雪松, 马晓军, 胥冰, 晁旭. 基于网络药理学的固肠止泻丸治疗肠易激综合征作用机制研究[J]. 药学学报, 2019, 54(3): 482-493.
SHI Hai-long, FENG Xue-song, MA Xiao-jun, XU Bing, CHAO Xu. Pharmacological network-based study on interventional mechanism of Gu-Chang-Zhi-Xie pills for treatment of irritable bowel syndrome[J]. Acta Pharmaceutica Sinica, 2019, 54(3): 482-493.

基于网络药理学的固肠止泻丸治疗肠易激综合征作用机制研究
史海龙, 冯雪松, 马晓军, 胥冰, 晁旭
陕西中医药大学, 陕西 西安 712046
摘要:
建立"药效成分-疾病靶标-生物学通路"之间的关系,探究固肠止泻丸治疗肠易激综合征(irritable bowel syndrome,IBS)的作用机制。首先,经ADME参数过滤与化学空间主成分分析从固肠止泻丸中筛选出96个活性成分,利用已上市药物在PharmMapper中进行抗IBS疾病靶标预测;其次,采用AutoDock Vina进行活性成分与预测疾病靶标的分子对接验证,建立"药效分子-靶标蛋白"对应关系;然后,利用Cytoscape软件构建"药效成分-疾病靶标"网络模型;最终,借助CluoGO插件将靶标元素映射到KEGG生物学通路中,进一步在通路水平上阐释关键靶标与固肠止泻丸治疗IBS作用机制的潜在联系。预测结果表明,打分靠前的11种关键药效分子大部分属于异喹啉类生物碱,分别主要作用于炎症和痛症两类靶标,对IBS均有不同程度抗炎镇痛的疗效。并且发现关键靶标39个,其中筛选出核心靶标TPH1、TNF-α、IL-6、IFN-γ、MAO-A和IL-10,将靶标映射到KEGG通路29条,其中5-HT信号通路的P值最小,因此推断其药效分子可能主要通过调节5-HT信号合成或转运通路发挥药效作用,并主要作用于6个核心靶标。本研究为进一步开展固肠止泻丸治疗IBS作用机制的研究提供了新思路和新方法。
关键词:   
Pharmacological network-based study on interventional mechanism of Gu-Chang-Zhi-Xie pills for treatment of irritable bowel syndrome
SHI Hai-long, FENG Xue-song, MA Xiao-jun, XU Bing, CHAO Xu
Shaanxi University of Chinese Medicine, Xi'an 712046, China
Abstract:
This study was designed to explore the interventional mechanism involving "multi-components, multi-targets and multi-pathways" of Gu-Chang-Zhi-Xie pills (GCZX) for treatment of irritable bowel syndrome (IBS) using pharmacological network technology. Firstly, 96 active ingredients from GCZX pills were screened by ADME parameter filtration and chemical space principal component analysis, and the targets of anti-IBS function were predicted using PharmMapper online database. Secondly, AutoDock Vina was used to validate the docking between the active ingredients and predicted disease targets, and to establish the corresponding relationship between "pharmacodynamic molecules and target proteins". Finally, the target elements were mapped into the KEGG biological pathway by CluoGO plug-in, which further elucidates the potential relationship between the key targets and the mechanism of action of Gu-Chang-Zhi-Xie pills for treatment of IBS. The results showed that most of the top 11 key pharmacodynamic molecules were isoquinoline alkaloids, which mainly acted on inflammatory or pain targets, with different degrees of anti-inflammatory and analgesic effects. A total of 39 key targets were identified, including TPH1, TNF-α, IL-6, IFN-γ, MAO-A and IL-10. These targets were mapped to 29 KEGG pathways, of which the P-value of 5-HT signaling pathway was the smallest. Therefore, the pharmacodynamic molecules mainly act on 6 core targets and may play a major role in the regulation of 5-HT signal synthesis or transport pathway. This study sets an example for drug development and mechanistic investigation using innovative technology.
Key words:   
收稿日期: 2018-08-18
DOI: 10.16438/j.0513-4870.2018-0759
基金项目: 陕西省中医管理局2017年中医药科研项目(JCMS003);陕西省教育厅2017年科学研究项目(17JK0206).
通讯作者: 史海龙
Email: shl112@sntcm.edu.cn
相关功能
PDF(846KB) Free
打印本文
0
作者相关文章

参考文献:
[1] Mearin F, Lacy BE, Chang L, et al. Bowel disorders[J]. Gastroenterology, 2016, 150:1393-1407.
[2] Zhang SS, Xu WJ, Chen Z, et al. Curative effect of dispersing stagnated liver-qi ang invigorating spleen versus invigorating spleen for eliminating dampness on diarrhea predominant irritable bowel syndrome[J]. China J Tradit Chin Med Pharm (中华中医药杂志), 2010, 25:127-130.
[3] Gu YM. Clinical study on treatment of irritable bowel syndrome with Gu Chang Zhixie pill[J]. Chin J Gastroenterol (胃肠病学), 2003, 8 supple 1:A23.
[4] Guo XL, Wang ZK, Guo Y, et al. Clinical observation on 896 cases of ulcerative colitis treated with Chinese medicine Gu Chang Zhixie pills[J]. J Shanxi Coll Tradit Chin Med (陕西中医学院学报), 2000, 23:19-23.
[5] Zhou RR, Zhang M, Zhu Y, et al. Data mining of the prescription containing Codonopsis and study on the molecular mechanism of prevention and treatment of gastrointestinal disease[J]. Acta Pharm Sin (药学学报), 2018, 53:1422-1428.
[6] Shi Y, Yao YJ, Lin Y, et al. Mechanism of Kai Xin San in the treatment of Alzheimer's disease based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2018, 53:1458-1466.
[7] Assenov Y, Ramirez F, Schelhorn SE, et al. Computing topological parameters of biological networks[J]. Bioinformatics, 2008, 24:282-284.
[8] Bindea G, Mlecnik B, Hackl H, et al. ClueGO:a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks[J]. Bioinformatics, 2009, 25:1091-1093.
[9] Li B, Xu X, Wang X, et al. A systems biology approach to understanding the mechanisms of action of Chinese herbs for treatment of cardiovascular disease[J]. Int J Mol Sci, 2012, 13:13501-13520.
[10] Liu ZZ, Liang JP, Nie YC, et al. Network pharmacology study of compound Xueshuantong capsule based on the targets related to blood circulation and hemostasis[J]. Acta Sci Nat Univ Sun Yat-sen (中山大学学报-自然科学版), 2013, 52:97-100.
[11] Wang X, Wang GC, Rong J, et al. Identification of steroidogenic components derived from Gardenia jasminoides Ellis potentially useful for treating postmenopausal syndrome[J]. Front Pharmacol, 2018, 9:390.
[12] Tao B, Zhang A, Lan R. Advances in studies on analgesic cukaloids and their analgesic mechanism[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2011, 22:957-960.
[13] Yan F, Wang L, Shi Y, et al. Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302:G504-G514.
[14] Ge ZJ, Dai TJ, Zeng YM, et al. Protective effect of L-dicentrine on acute myocardial ischemia and anoxia lesion[J]. Chin J Pharmacol Toxicol (中国药理学与毒理学杂志), 2005, 19:35-38.
[15] Li HL, Zhang RP, Ye HT, et al. Effect of L-dicentrine on contraction of rat stomach muscle strips[J]. China J Chin Mater Med (中国中药杂志), 2000, 25:42-44.
[16] Li M, Shu SG, Shu YH, et al. Protective effect of L-dicentrine on acute myocardial ischemia and anoxia lesion[J]. J Kunming Med Univ (昆明医学院学报), 1997, 18:66-67.
[17] Ng A, Habib A, Swami A, et al. Randomized controlled trial investigating the effect of transcervical papaverine and bupivacaine on postoperative analgesia following laparoscopic sterilization[J]. Eur J Anaesthesiol, 2002, 19:803-807.
[18] Zhang YC, Shao YY, Zuo X, et al. Therapeutic effect of Donglingcao Tablet on post-inflammatory irritable bowel syndrome in rats[J]. Chin J Mod Appl Pharm (中国现代应用药学), 2016, 33:1235-1239.
[19] Brown PM, Drossman DA, Wood AJ, et al. The tryptophan hydroxylase inhibitor LX1031 shows clinical benefit in patients with nonconstipating irritable bowel syndrome[J]. Gastroenterology, 2011, 141:507-516.
[20] Liebregts T, Adam B, Bredack C, et al. Immune activation in patients with irritable bowel syndrome[J]. Gastroenterology, 2007, 132:913-920.
[21] Matricon J, Meleine M, Gelot A, et al. Review article:associations between immune activation, intestinal permeability and the irritable bowel syndrome[J]. Aliment Pharmacol Ther, 2012, 36:1009-1031.
[22] Wu D, Gao Y, Xiang H, et al. Exploration into mechanism of antidepressant of Bupleuri radix based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2018, 53:210-219.
[23] Oliveira MC, Pelegrini-da-Silva A, Parada CA, et al. 5-HT acts on nociceptive primary afferents through an indirect mechanism to induce hyperalgesia in the subcutaneous tissue[J]. Neuroscience, 2007, 145:708-714.
[24] Masand PS, Gupta S, Schwartz TL, et al. Paroxetine in patients with irritable bowel syndrome:a pilot open-label study[J]. Prim Care Companion J Clin Psychiatry, 2002, 4:12-16.