药学学报, 2019, 54(3): 522-527
引用本文:
杨华娇, 武丽南, 刘延平, 谷元, 魏广力, 刘万卉, 司端运. LC-MS/MS法测定家兔血浆中二氟可龙的浓度[J]. 药学学报, 2019, 54(3): 522-527.
YANG Hua-jiao, WU Li-nan, LIU Yan-ping, GU Yuan, WEI Guang-li, LIU Wan-hui, SI Duan-yun. The determination of diflucortolone in rabbit plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS)[J]. Acta Pharmaceutica Sinica, 2019, 54(3): 522-527.

LC-MS/MS法测定家兔血浆中二氟可龙的浓度
杨华娇1,2, 武丽南2, 刘延平2, 谷元2, 魏广力2, 刘万卉1, 司端运2
1. 烟台大学, 山东 烟台 246000;
2. 天津药物研究院释药技术与药代动力学国家重点实验室, 天津 300193
摘要:
本文建立了一种灵敏、高效的LC-MS/MS分析方法测定家兔血浆中二氟可龙的浓度,并应用于戊酸二氟可龙乳膏经皮给药后家兔体内活性代谢物二氟可龙的血浆药动学研究。以乙氧苯柳胺为内标,血浆样品经过乙酸乙酯提取后,通过Zorbax Eclipse XDB-C18(50 mm×4.6 mm,5 μm)色谱柱分离,以50%乙腈-甲醇溶液和5 mmol·L-1甲酸铵-0.1%甲酸-5%甲醇水溶液作为流动相进行梯度洗脱;在电喷雾离子化源(ESI)正离子检测条件下,采用多反应离子监测模式(MRM)进行定量分析,检测的离子对分别为[M+H]+ m/z 395.2→m/z 355.2(二氟可龙),[M+H]+ m/z 258.1→m/z 120.9(内标)。二氟可龙在0.01~10 ng·mL-1内线性良好,低、中、高浓度质控样品的准确度平均值在92.7%~97.0%之间,批内、批间精密度分别为4.33%~7.40%和2.27%~7.63%之间。采用该分析方法测定戊酸二氟可龙乳膏经皮给药0.01 g·cm-2后兔血浆中活性代谢物二氟可龙的浓度,计算得出的主要药代学参数tmaxCmax、AUC0-72 ht1/2分别为(6.33±1.21)h、(0.168±0.080 0)ng·mL-1、(3.15±0.834)h·ng·mL-1、(32.0±17.4)h。本研究中动物实验方案已获得天津药物研究院新药评价有限公司实验动物管理与使用委员会的批准。
关键词:   
The determination of diflucortolone in rabbit plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS)
YANG Hua-jiao1,2, WU Li-nan2, LIU Yan-ping2, GU Yuan2, WEI Guang-li2, LIU Wan-hui1, SI Duan-yun2
1. Yantai University, Yantai 246000, China;
2. State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
Abstract:
A sensitive and efficient liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for quantitative determination of diflucortolone in rabbit plasma after dermal administration of diflucortolone valerate cream to rabbits. After extraction with ethyl acetate, the chromatographic separation was performed on Zorbax Eclipse XDB-C18 (50 mm×4.6 mm, 5 μm) with a gradient mobile phase consisting of 50% acetonitrile-50% methanol and 0.1% formic acid-5% methanol-5 mmol·L-1 ammonium formate at a flow rate of 0.35 mL·min-1. The quantitative analysis was carried out using multiple reaction monitoring (MRM) at specific ion transitions of m/z[M+H]+ 395.2→m/z 355.2 for diflucortolone and m/z[M+H]+ 258.1→m/z 120.9 for ethoxyphenylethylamine (internal standard) in positive ion mode with electrospray ionization (ESI) source. This validated LC-MS/MS method had a linearity over the concentration range of 0.01-10 ng·mL-1 with the lower limit of quantification (LLOQ) at 0.01 ng·mL-1. At level of LLOQ, the inter and intra-assay precision (RSD) were no greater than 9.82% and 11.0%, respectively. The main pharmacokinetic parameters of the diflucortolone including tmax, Cmax, AUC0-72 h, and t1/2 were as follows:(6.33±1.21) h, (0.168±0.080 0) ng·mL-1, (3.15±0.834) h·ng·mL-1, (32.0±17.4) h. The method was validated in the pharmacokinetic study of diflucortolone in rabbit following dermal administration of diflucortolone valerate cream at dose of 0.01 g·cm-2. In this study, the program of animal testing had been approved by Committee on the management and usage of experimental animal in the Evaluation Company of Innovative Drug, Tianjin Institute of Pharmaceutical Research.
Key words:   
收稿日期: 2018-09-04
DOI: 10.16438/j.0513-4870.2018-0816
基金项目: 国家自然科学基金青年科学基金资助项目(81503154).
通讯作者: 司端运
Email: sidy@tjipr.com
相关功能
PDF(368KB) Free
打印本文
0
作者相关文章

参考文献:
[1] Qiu HY. Mechanism of action and clinical application of glucocorticoids[J]. Mod Chin Med Edu (中国中医药现代远程教育), 2010, 8:90-91.
[2] Lu CX. Rational application of glucocorticoid hormone in clinical practice[J]. J Clin Rational Use Drugs (临床合理用药杂志), 2012, 5:90-91.
[3] Wiedersberg S, Leopold CS, Guy RH. Bioavailability and bioequivalence of topical glucocorticoids[J]. Eur J Pharm Biopharm, 2008, 68:453-466.
[4] Leopold CS. Pharmacokinetic analysis of the FDA guidance for industry-'topical dermatologic corticosteroids:in vivo bioequivalence[J]. Eur J Pharm Biopharm, 2003, 56:53-58.
[5] Yacobi A, Shah VP, Bashaw ED, et al. Current challenges in bioequivalence, quality, and novel assessment technologies for topical products[J]. Pharm Res, 2014, 31:837-846.
[6] Earla R, Boddu SH, Cholkar K, et al. Development and validation of a fast and sensitive bioanalytical method for the quantitative determination of glucocorticoids-quantitative measurement of dexamethasone in rabbit ocular matrices by liquid chromatography tandemmass spectrometry[J]. J Pharm Biomed Anal, 2010, 52:525-533.
[7] Deng P. Pharmacokinetic Study of Two New Dosage Forms of Glucocorticoid Drugs (两种糖皮质激素类药物新剂型的药动学研究)[D]. Shenyang:Shenyang Pharmaceutical University, 2008.
[8] Samtani MN, Jusko WJ. Quantification of dexamethasone and corticosterone in rat biofluids and fetal tissue using highly sensitive analytical methods:assay validation and application to a pharmacokinetic study[J]. Biomed Chromatogr, 2007, 21:585-597.
[9] Goswami N, Gupta VR, Jogia HA, et al. Development and validation of a novel stability-indicating RP-HPLC method for the simultaneous determination of halometasone, fusidic acid, methylparaben, and propylparaben in topical pharmaceutical formulation[J]. Sci Pharm, 2013, 81:505-518.
[10] Guo JF, Zhong DF, Chen XY. Identification of nine corticosteroids with high performance liquid chromatography-mass spectrometry[J]. Acta Pharm Sin (药学学报), 1999, 34:928-932.
[11] Abdel-Salama FS, Elkheshen SA, Mahmoud AA, et al. Diflucortolone valerate loaded solid lipid nanoparticles as a semisolid topical delivery system[J]. Bull Faculty Pharm, 2016, 54:1-7.
[12] Abdel-Salama FS, Ammar HO, Elkheshen SA, et al. Anti-inflammatory sunscreen nanostructured lipid carrier formulations[J]. J Drug Deliv Sci Technol, 2017, 37:13-19.
[13] Abdel-Salam FS, Mahmoud AA,Ammar HO et al. Nanostructured lipid carriers as semisolid topical delivery formulations for diflucortolone valerate[J]. J Liposome Res, 2017, 27:41-55.
[14] Fayez YM, Elghobashy MR,Goda ZM et al. Comparative study on four spectrophotometric methods manipulating ratio spectra for the simultaneous determination of binary mixture of diflucortolone valerate and isoconazole nitrate[J]. Bull Faculty Pharm, 2016, 54:39-47.
[15] Özcan I, Azizoğlu E, Şenyiğit T, et al. Enhanced dermal delivery of diflucortolone valerate using lecithin/chitosan nanoparticles:in-vitro and in-vivo evaluations[J]. Int J Nanomed, 2013, 8:461-475.
[16] Dou X, Liu LL, Zhu X. Application of topical glucocorticoids in dermatology[J]. J Clin Drug Ther (临床药物治疗杂志), 2006, 4:32-36.
[17] Hoppe G. Diflucortolone valerate Asian experience[J]. Drug, 1988, 36:24-33
[18] Mützel VW. Pharmacokinetics and biotransformation of diflucortolonevalerate in man (author's transl)[J]. Arzneimittelforschung, 1976, 26:1487-1492.
[19] Teng X, Sun MJ. Advances in the study of carboxylate esterase[J]. Life Sci (生命科学), 2003, 15:31-35.
[20] National Food and Drug Administration. Technical Guide-lines for Nonpharmacologic Pharmacokinetics of Drugs (药物非临床药代动力学研究技术指导原则)[S]. Beijing:National Food and Drug Administration, 2014.http://www.cde.org.cn/zdyz.do?method=largePage&id=191.
[21] Chinese Pharmacopoeia Commission. Guiding Principles for Quantitative Analysis of Biological Samples[S]//Pharmacopoeia of the People's Republic of China (中华人民共和国药典). 2015 Ed. Beijing:China Medical Science Press, 2015.