药学学报, 2019, 54(4): 587-593
引用本文:
赵宗璇, 潘燕. Rho GTP酶家族分子及其调节因子与血管内皮屏障功能间的关系[J]. 药学学报, 2019, 54(4): 587-593.
ZHAO Zong-xuan, PAN Yan. Relationship between Rho GTPase family regulation and vascular endothelial barrier function[J]. Acta Pharmaceutica Sinica, 2019, 54(4): 587-593.

Rho GTP酶家族分子及其调节因子与血管内皮屏障功能间的关系
赵宗璇, 潘燕
北京大学基础医学院, 北京 100191
摘要:
血管内皮屏障功能的受损涉及到多种病理生理状态的发生与进展,血管内皮屏障的完整性受到细胞骨架及细胞间连接的调控,而Rho-GTP酶在其中起着核心作用。目前已经发现RhoA、Rac1、Cdc42、RhoB参与调节血管内皮屏障功能。这些Rho-GTP酶在血管内皮屏障功能的调节中有着双重作用,与其亚细胞定位密切相关。当炎症因子作用于血管内皮细胞,RhoA广泛分布于细胞各处引起微丝聚集,产生急性细胞收缩破坏血管内皮屏障。在新生血管内皮细胞中,RhoA则大量聚集于细胞膜附近,参与细胞间连接的产生与成熟。Rac1及Cdc42在静息状态下能够降低丝切蛋白的活性,减少细胞膜附近细胞骨架重构,参与维持血管内皮屏障的稳定。而Cdc42在血管内皮完整性受损时能够迅速聚集于细胞皮质处,活化肌球蛋白Ⅱ,促进黏合连接的生成,参与早期血管内皮屏障完整性的恢复。本文就Rho GTP酶对血管内皮屏障完整性的调节进行概述。
关键词:    内皮      血管      ρGTP结合蛋白质类      毛细血管通透性     
Relationship between Rho GTPase family regulation and vascular endothelial barrier function
ZHAO Zong-xuan, PAN Yan
School of Basic Medical Sciences, Peking University, Beijing 100191, China
Abstract:
Injury of vascular endothelial barrier function is implicated in several pathophysiological processes. The integrity of vascular endothelium is regulated by cytoskeleton and cell-cell junctions. Small guanosine triphosphatases of the Rho family (Rho GTPases) are known to play a central role in vascular endothelial barrier function. It has been reported that RhoA, Rac1, Cdc42 and RhoB are involved and they exert both positive and negative effect on endothelial barrier integrity, depending on their subcellular location. When inflammatory factors such as thrombin attack the vascular endothelial cells, GEF of RhoA will be widely distributed throughout the cells. Thus, activated RhoA causes aggregation of F-actin fibers in a short time and disrupts the vascular endothelial barrier, a process named acute cell contraction. However, RhoA may also induce the production and maturation of intercellular junctions in new cells. Rac1 and Cdc42 help to maintain the integrity of vascular endothelial barrier at the resting state. They cause the phosphorylation of LIM kinase and inhabitation of cofilin, resulting in less remodeling of cytoskeletal in the vascular endothelial cells. On the other hand, Cdc42 can translocate to the cortex rapidly after a stimulation, where Cdc42 will activate the myosin Ⅱ and promote the reorganization of adjective junction to facilitate the recovery of vascular endothelial barrier. In this review, we overviewed how Rho GTPases regulate the vascular endothelial barrier integrity.
Key words:    endothelium    blood vessel    rho GTP-binding protein    capillary permeability   
收稿日期: 2018-11-20
DOI: 10.16438/j.0513-4870.2018-1046
基金项目: 国家自然科学基金资助项目(81773765,81270049,81874318,81673453,81473235).
通讯作者: 潘燕
Email: pannay26@bjmu.edu.cn
相关功能
PDF(423KB) Free
打印本文
0
作者相关文章
赵宗璇  在本刊中的所有文章
潘燕  在本刊中的所有文章

参考文献:
[1] Rodrigues SF, Granger DN. Blood cells and endothelial barrier function[J]. Tissue Barriers, 2015, 3:e978720.
[2] Gonzalez-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways[J]. Biochim Biophys Acta, 2008, 1778:729-756.
[3] Bazzoni G, Dejana E. Endothelial cell-to-cell junctions:molecular organization and role in vascular homeostasis[J]. Physiol Rev, 2004, 84:869-901.
[4] Vestweber D, Winderlich M, Cagna G, et al. Cell adhesion dynamics at endothelial junctions:VE-cadherin as a major player[J]. Trends Cell Biol, 2009, 19:8-15.
[5] Aman J, Weijers EM,van Nieuw Amerongen GP, et al. Using cultured endothelial cells to study endothelial barrier dysfunction:challenges and opportunities[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311:L453-L466.
[6] Knapp M, Tu X, Wu R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy[J]. Acta Pharmacol Sin, 2019, 40:1-8.
[7] Oldenburg J, de Rooij J. Mechanical control of the endothelial barrier[J]. Cell Tissue Res, 2014, 355:545-555.
[8] Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators[J]. Nat Rev Mol Cell Biol, 2016, 17:496-510.
[9] Heasman SJ, Ridley AJ. Mammalian Rho GTPases:new insights into their functions from in vivo studies[J]. Nat Rev Mol Cell Biol, 2008, 9:690-701.
[10] Laurin M, Cote JF. Insights into the biological functions of dock family guanine nucleotide exchange factors[J]. Genes Dev, 2014, 28:533-547.
[11] Tasaka S, Koh H, Yamada W, et al. Attenuation of endotoxin-induced acute lung injury by the Rho-associated kinase inhibitor, Y-27632[J]. Am J Respir Cell Mol Biol, 2005, 32:504-510.
[12] Essler M, Amano M, Kruse HJ, et al. Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells[J]. J Biol Chem, 1998, 273:21867-21874.
[13] Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin Ⅱ:modulated by G proteins, kinases, and myosin phosphatase[J]. Physiol Rev, 2003, 83:1325-1358.
[14] Martino F, Perestrelo AR, Vinarsky V, et al. Cellular mechanotransduction:from tension to function[J]. Front Physiol, 2018, 9:824.
[15] Han JY, Yi Y, Liang AH, et al. Research progress of Rho/ROCK signal pathway[J]. Acta Pharm Sin (药学学报), 2016, 51:853-859.
[16] Tong H, Qi D, Guan X, et al. c-Abl tyrosine kinase regulates neutrophil crawling behavior under fluid shear stress via Rac/PAK/LIMK/cofilin signaling axis[J]. J Cell Biochem, 2018, 119:2806-2817.
[17] Ando K, Fukuhara S, Moriya T, et al. Rap1 potentiates endothelial cell junctions by spatially controlling myosin Ⅱ activity and actin organization[J]. J Cell Biol, 2013, 202:901-916.
[18] Monickaraj F, McGuire PG, Nitta CF, et al. Cathepsin D:an Mϕ -derived factor mediating increased endothelial cell permeability with implications for alteration of the blood-retinal barrier in diabetic retinopathy[J]. FASEB J, 2016, 30:1670-1682.
[19] Yamada S, Nelson WJ. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion[J]. J Cell Biol, 2007, 178:517-527.
[20] David S, Ghosh CC, Mukherjee A, et al. Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense[J]. Arterioscler Thromb Vasc Biol, 2011, 31:2643-2652.
[21] Birukova AA, Zebda N, Cokic I, et al. p190RhoGAP mediates protective effects of oxidized phospholipids in the models of ventilator-induced lung injury[J]. Exp Cell Research, 2011, 317:859-872.
[22] Broman MT, Mehta D, Malik AB. Cdc42 regulates the restoration of endothelial adherens junctions and permeability[J]. Trends Cardiovasc Med, 2007, 17:151-156.
[23] Pronk MCA,van Bezu JSM,van Nieuw Amerongen GP, et al. RhoA, RhoB and RhoC differentially regulate endothelial barrier function[J]. Small GTPases, 2017. DOI:10.1080/21541248. 2017.1339767.
[24] Hippenstiel S, Tannert-Otto S, Vollrath N, et al. Glucosylation of small GTP-binding Rho proteins disrupts endothelial barrier function[J]. Am J Physiol, 1997, 272:L38-L43.
[25] van Nieuw Amerongen GP, van Delft S, Vermeer MA, et al. Activation of RhoA by thrombin in endothelial hyperpermeability:role of Rho kinase and protein tyrosine kinases[J]. Circ Res, 2000, 87:335-340.
[26] Gavard J, Patel V, Gutkind JS. Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia[J]. Dev Cell, 2008, 14:25-36.
[27] Wildenberg GA, Dohn MR, Carnahan RH, et al. p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho[J]. Cell, 2006, 127:1027-1039.
[28] Garcia JGN, Liu F, Verin AD, et al. Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement[J]. J Clin Invest, 2001, 108:689-701.
[29] Schlegel N, Waschke J. cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier-a signaling pathway compromised in inflammation[J]. Cell Tissue Res, 2014, 355:587-596.
[30] Yang N, Higuchi O, Ohashi K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization[J]. Nature, 1998, 393:809-812.
[31] Barabutis N, Dimitropoulou C, Gregory B, et al. Wild-type p53 enhances endothelial barrier function by mediating RAC1 signalling and RhoA inhibition[J]. J Cell Mol Med, 2018, 22:1792-1804.
[32] Amado-Azevedo J, Reinhard NR, van Bezu J, et al. The minor histocompatibility antigen 1(HMHA1)/ArhGAP45 is a RacGAP and a novel regulator of endothelial integrity[J]. Vasc Pharmacol, 2018, 101:38-47.
[33] Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin[J]. Nat Cell Biol, 2006, 8:1223-1234.
[34] Ramchandran R, Mehta D, Vogel SM, et al. Critical role of Cdc42 in mediating endothelial barrier protection in vivo[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 295:L363-L369.
[35] Amado-Azevedo J, Reinhard NR, van Bezu J, et al. A CDC42-centered signaling unit is a dominant positive regulator of endothelial integrity[J]. Sci Rep, 2017, 7:10132.
[36] Pannekoek WJ, Vliem MJ, Bos JL. Multiple Rap1 effectors control Epac1-mediated tightening of endothelial junctions[J]. Small GTPases, 2018. DOI:10.1080/21541248.2018.1431512.
[37] Reinhard NR, Mastop M, Yin T, et al. The balance between Gαi-Cdc42/Rac and Gα12/13-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate[J]. Mol Biol Cell, 2017, 28:3371-3382.
[38] Zihni C, Balda MS, Matter K. Signalling at tight junctions during epithelial differentiation and microbial pathogenesis[J]. J Cell Sci, 2014, 127:3401-3413.
[39] Kovačević I, Sakaue T, Majolee J, et al. The Cullin-3-Rbx1-KCTD10 complex controls endothelial barrier function via K63 ubiquitination of RhoB[J]. J Cell Biol, 2018, 217:1015-1032.
[40] Marcos-Ramiro B, Garcia-Weber D, Barroso S, et al. RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border[J]. J Cell Biol, 2016, 213:385-402.
[41] Duan WG, Yuan ST, Liao H, et al. Advances in the study of Rho kinase and its inhibitors[J]. Acta Pharm Sin (药学学报), 2007, 42:1013-1022.
[42] Guan R, Xu X, Chen M, et al. Advances in the studies of roles of Rho/Rho-kinase in diseases and the development of its inhibitors[J]. Eur J Med Chem, 2013, 70:613-622.
[43] Dong M, Yan BP, Liao JK, et al. Rho-kinase inhibition:a novel therapeutic target for the treatment of cardiovascular diseases[J]. Drug Discov Today, 2010, 15:622-629.
[44] Sato M, Tani E, Fujikawa H, et al. Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm[J]. Circ Res, 2000, 87:195-200.
[45] Masumoto A, Mohri M, Shimokawa H, et al. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina[J]. Circulation, 2002, 105:1545-1547.
[46] Chiba Y, Ishii Y, Kitamura S, et al. Activation of Rho is involved in the mechanism of hydrogen-peroxide-induced lung edema in isolated perfused rabbit lung[J]. Microvasc Res, 2001, 62:164-171.
[47] Wang JJ, Kong H, Xu J, et al. Fasudil alleviates LPS-induced lung injury by restoring aquaporin 5 expression and inhibiting inflammation in lungs[J]. J Biomed Res, 2017.DOI:10.7555/JBR.31.20170024.
[48] Tokushige H, Inatani M, Nemoto S, et al. Effects of topical administration of y-39983, a selective Rho-associated protein kinase inhibitor, on ocular tissues in rabbits and monkeys[J]. Invest Ophthalmol Vis Sci, 2007, 48:3216-3222.
[49] Wang J, Xu X, Elliott MH, et al. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage[J]. Diabetes, 2010, 59:2297-2305.
[50] Wahl-Jensen VM, Afanasieva TA, Seebach J, et al. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function[J]. J Virol, 2005, 79:10442-10450.
[51] Eisa-Beygi S, Wen XY. Could pharmacological curtailment of the RhoA/Rho-kinase pathway reverse the endothelial barrier dysfunction associated with Ebola virus infection?[J]. Antiviral Res, 2015, 114:53-56.
相关文献:
1.赵一秀, 刘学, 张妍.Circular RNA调控血管内皮功能失调研究进展[J]. 药学学报, 2019,54(2): 228-234
2.黄恺, 赵志敏, 刘洪亮, 孙鑫, 吕靖, 陶艳艳, 刘成海.基于肝窦内皮细胞功能评价隐丹参酮抑制血管新生的作用[J]. 药学学报, 2016,51(8): 1257-1262
3.干良敏, 魏守蓉, 向本旭, 王文, 薛存宽.缬芎滴丸对大鼠脑缺血再灌注损伤后血管新生的影响[J]. 药学学报, 2016,51(9): 1423-1428
4.王美鑑, 杜丹玉, 范薇, 张苍, 刘阳, 樊佳红, 袁胜涛, 林森森.消癌平注射液抗血管生成作用及其机制研究[J]. 药学学报, 2016,51(2): 309-315
5.郑书国, 赵梦秋, 任尤楠, 杨解人, 钱之玉.番红花酸对人脐静脉内皮细胞VCAM-1表达和单核-内皮细胞黏附的影响[J]. 药学学报, 2015,50(1): 34-38
6.周琬琪, 张莉婧, 杨瀚泽, 冯志强, 李燕.Aurora激酶抑制剂ZLJ213抗人结肠癌的作用[J]. 药学学报, 2015,50(7): 854-860
7.张才臻, 母晓凤, 徐先祥, 邱飞, 林俊生, 刁勇.下调间隙连接蛋白43表达对血管内皮细胞生物功能的影响[J]. 药学学报, 2015,50(3): 298-304
8.吴循循, 张才臻, 王馨, 刁勇.以血管生成与重构为靶点的肝纤维化治疗研究[J]. 药学学报, 2015,50(5): 535-540
9.郑晓珂, 刘彩霞, 翟英英, 李玲玲, 王小兰, 冯卫生.卷柏中穗花杉双黄酮对TNF-α诱导的血管内皮细胞损伤的保护作用[J]. 药学学报, 2013,48(9): 1503-1509
10.龚陈媛, 陆 宾, 杨 莉, 王 磊, 季莉莉.石斛联苄类化合物抑制血管新生的机制[J]. 药学学报, 2013,48(3): 337-342
11.孙桂波 秦 蒙 罗 云 潘瑞乐 孟祥宝 王 敏 邹艳惠 孙晓波.杨梅苷对氧化应激诱导血管内皮细胞凋亡的保护作用及其机制探讨[J]. 药学学报, 2013,48(4): 615-620
12.郑晓珂, 刘彩霞, 翟英英, 李玲玲, 王小兰, 冯卫生.卷柏中穗花杉双黄酮对TNF-α诱导的血管内皮细胞损伤的保护作用[J]. 药学学报, 2013,48(9): 1503-1509
13.李人杰, 裘 军, 张学农, 陈 静, 李 高.消旋TJ0711长期给药对肾性高血压大鼠的药效学研究[J]. 药学学报, 2012,47(8): 1001-1005
14.闫文义, 于东明, 皇甫超申.亚硝酸钠诱导PC12细胞分化[J]. 药学学报, 2012,47(9): 1147-1152
15.周雅琼, 张 娟, 金海珍, 何 远, 王 彤, 王 旻.抗EGFR/抗KDR双特异性单链抗体的构建及表达[J]. 药学学报, 2012,47(10): 1317-1322
16.张保顺 叶小利 陈 竹 姚 波 谭 平 李学刚.甲基橙皮素-7-烷基醚同系物的合成及其抗炎作用[J]. 药学学报, 2011,46(7): 811-817
17.丁丽丽 刘 明 张胜华 赵向忠 吴 宁 陈 雷 王广建 林秀坤.力达霉素通过下调VEGF表达抑制斑马鱼胚胎血管生成[J]. 药学学报, 2010,45(4): 456-461
18.杨欢 车瓯 陈珊 孙靓 季爱民.聚乙烯亚胺介导siRNA分子体内外基因沉默VEGFR2表达[J]. 药学学报, 2010,45(5): 576-581
19.高美娟 刘 明 李 波 李明龙 卞丽香 于桂娜.羟苯磺酸钙对早期糖尿病肾病大鼠肾脏的保护作用[J]. 药学学报, 2009,44(2): 126-133
20.薛为哲 吕炜 周智明 王占黎.血管紧张素受体和内皮素受体双重受体拮抗剂药效团模型的研究(英文)[J]. 药学学报, 2009,44(9): 1002-1008
21.张胜华;陈静;江敏;甄永苏.力达霉素诱导人胃癌BGC823细胞凋亡和抑制裸鼠移植瘤生长[J]. 药学学报, 2008,43(6): 601-604
22.张华蓉;徐承平;陈飞兰;卞修武.诺帝对血管内皮生长因子诱导的人脐血源性内皮祖细胞功能的影响[J]. 药学学报, 2008,43(2): 133-137
23.陈海敏;严小军;王峰;林晶;徐炜烽.λ-卡拉胶寡糖体外对血管生成的抑制作用[J]. 药学学报, 2007,42(6): 595-600
24.马悦颖;尚明英;李沧海;霍海如;蔡少青;姜廷良.桂枝汤有效成分苯丙烯类化合物干预IL-1β刺激小鼠脑微血管内皮细胞释放PGE2的构效关系[J]. 药学学报, 2007,42(7): 798-802
25.刘慧青;魏欣冰;娄海燕;张斌;孙茹;张岫美.化合物EXP-2528对Ang II诱导大鼠脑微血管内皮细胞表达E-selectin和VCAM-1的影响[J]. 药学学报, 2007,42(8): 822-827
26.赵惟;马会利;齐宪荣.靶向肿瘤新生血管的阿霉素阳离子脂质体的体外研究[J]. 药学学报, 2007,42(9): 982-988
27.陈剑鸿;卞修武;姚小红;杨世昕;徐长荣;周向东;平轶芳.诺帝对人恶性胶质瘤细胞U87甲酰化肽受体功能的影响[J]. 药学学报, 2007,42(3): 257-262
28.赵利枝;杨日芳;赵如胜;张雁芳;陈冬梅;汪海.α-胺基苄基膦酸酯的合成及其生物活性[J]. 药学学报, 2006,41(4): 342-345
29.光红梅;张岫美;李应全;魏欣冰;王姿颖;刘彗青.羟乙基葛根素对过氧化氢致牛脑微血管内皮细胞损伤的保护作用[J]. 药学学报, 2005,40(3): 220-224
30.郑建普;曹永孝;徐仓宝;Lars;Edvinsson.阿托品对大鼠肠系膜动脉的舒张作用及机制[J]. 药学学报, 2005,40(5): 402-405
31.李菌;周慧君;.二氢青蒿素抑制K562细胞血管内皮生长因子的表达[J]. 药学学报, 2005,40(11): 1041-1045
32.陈欢欢;周慧君;.青蒿琥酯的抗血管生成作用[J]. 药学学报, 2004,39(1): 29-33
33.王兴祥;尚云鹏;陈君柱;朱军慧;郭晓纲;孙坚.银杏叶提取物对外周血内皮祖细胞数量和功能的影响[J]. 药学学报, 2004,39(8): 656-660
34.王心华;吴淑英;甄永苏.大黄素对血管生成的抑制作用[J]. 药学学报, 2004,39(4): 254-258
35.张晓晖;张斌;龚培力;曾繁典.莲房原花青素对大鼠心肌缺血再灌注损伤的保护作用[J]. 药学学报, 2004,39(6): 401-405
36.张黎;芮耀诚;邱彦;李铁军;刘厚佳;陈万生.何首乌水溶性成分2,3,5,4′-四羟基二苯乙烯-2-O-β-D葡糖苷(ST I)对内皮细胞表达VEGF的影响何首乌水溶性成分2,3,5,4′-四羟基二苯乙烯-2-O-β-D葡糖苷(ST I)对内皮细胞表达VEGF的影响[J]. 药学学报, 2004,39(6): 406-409
37.陈冬梅;陈凯;汪海;.吗啉环和哌嗪环类衍生物的抗血栓作用及其分子机制[J]. 药学学报, 2003,38(9): 641-645
38.张建军;;石瑞丽.Caspases在缺氧性脑微血管内皮细胞凋亡中的作用[J]. 药学学报, 2003,38(10): 739-742
39.刘慧青;张岫美;魏欣冰.氯沙坦对血管紧张素II致培养的牛脑微血管内皮细胞损伤的保护作用[J]. 药学学报, 2003,38(1): 5-5
40.石瑞丽;张建军.葛根素对缺氧性血管内皮细胞凋亡的保护作用[J]. 药学学报, 2003,38(2): 103-107
41.李洪燕;李燕;刘忠海;吴亨佳;陈飞虎;陈晓光.重组人内抑素的抗肿瘤活性[J]. 药学学报, 2002,37(10): 763-766
42.杨鹏远;芮耀诚;张黎;李铁军;邱彦;王杰松;张卫东.U937泡沫细胞中血管内皮生长因子的表达及药物的抑制作用[J]. 药学学报, 2002,37(2): 86-89
43.谢秋玲;陈孝银;章群;戴云.一种新型抗肿瘤药物──内皮抑制素[J]. 药学学报, 2001,36(7): 552-554
44.朱海波;耿美玉;管华诗;张均田.海洋硫酸多糖DPS对大鼠血管平滑肌细胞增殖的影响及其机制的探讨[J]. 药学学报, 2001,36(1): 19-24
45.赵慧颖;下川;宏明.一氧化氮合酶抑制剂(L-NAME)的药理作用与慢性血管效应[J]. 药学学报, 1999,34(9): 646-651
46.余祥彬;刘锡钧;钱定华;张俊平;胡振林;吴堂明.肿瘤坏死因子对牛肺动脉内皮细胞的损伤及蛋白激酶C抑制剂的抑制作用[J]. 药学学报, 1996,31(3): 176-181
47.胡茂稳;周序斌;张黎华;徐红岩.硫酸多糖对体外人脐静脉内皮细胞损伤的保护作用[J]. 药学学报, 1995,30(9): 641-645
48.胡晋红;孙笃新;曾国钱;林爱友;芮耀诚.卡西霉素对血小板在脑微血管内皮细胞粘附的影响及药物的阻断作用[J]. 药学学报, 1994,29(5): 335-339
49.梅;兵;王耀发;吴骏晞;陈维洲.氧自由基致体外培养血管内皮细胞的损伤及人参皂甙的保护作用[J]. 药学学报, 1994,29(11): 801-808
50.齐爱东;吴葆杰;周序斌.花生四烯酸、二十碳五烯酸及二十二碳六烯酸对兔主动脉条张力的影响[J]. 药学学报, 1992,27(4): 246-251