药学学报, 2019, 54(4): 594-600
引用本文:
张如月, 周玉冰, 杨哲, 郭金秀, 李朵璐. 外泌体介导的肿瘤化疗耐药研究进展[J]. 药学学报, 2019, 54(4): 594-600.
ZHANG Ru-yue, ZHOU Yu-bing, YANG Zhe, GUO Jin-xiu, LI Duo-lu. Advances in understanding exosomes-mediated tumor chemoresistance[J]. Acta Pharmaceutica Sinica, 2019, 54(4): 594-600.

外泌体介导的肿瘤化疗耐药研究进展
张如月, 周玉冰, 杨哲, 郭金秀, 李朵璐
郑州大学第一附属医院药学部, 河南省精准临床药学重点实验室, 河南 郑州 450052
摘要:
化疗是肿瘤的主要治疗方法之一,在控制肿瘤进展方面发挥着重要作用。然而,化疗药物的长期应用通常会诱导肿瘤细胞对药物产生耐药性,从而导致治疗失败和疾病进展。因此,肿瘤耐药的机制及耐药预防或逆转策略一直是肿瘤治疗研究的热点问题。外泌体(exosomes)是机体细胞分泌的一种直径在40~100 nm之间的小球形囊泡,携带多种生物活性小分子(DNA、ncRNA、mRNA、蛋白质等),参与细胞微环境的调节,从而调控体内多种生理和病理活动。近年来研究表明,外泌体作为细胞-细胞间耐药信号传递的媒介,在肿瘤化疗耐药、转移及免疫逃逸等方面发挥重要作用。本文对外泌体在肿瘤耐药发生中的作用及机制进行综述,旨在为肿瘤耐药的预防或治疗提供新的思路。
关键词:    外泌体      肿瘤      肿瘤微环境      耐药性     
Advances in understanding exosomes-mediated tumor chemoresistance
ZHANG Ru-yue, ZHOU Yu-bing, YANG Zhe, GUO Jin-xiu, LI Duo-lu
Henan Key Laboratory for Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
Abstract:
Chemotherapy plays an essential role in controlling tumor growth and progression. However, long-term use of chemotherapeutic drugs usually results in drug resistance in tumor cells, leading to treatment failure and disease progression. The mechanism of tumor resistance to chemotherapy and the strategy of prevention or reversal of such resistance have always been hot issues in cancer therapy research. Exosomes are small spherical vesicles secreted by cells with a diameter of 40-100 nm. They carry a variety of bioactive small molecules (including DNA, ncRNA, RNA, and proteins) and participate in regulation of cell microenvironment, thereby affecting a variety of physiological and pathological activities in the body. In recent years, studies have shown that exosomes play an important role in cancer cell resistance to chemotherapy, metastasis, and immune escape. This article reviews the role and mechanism of exosomes in the development of drug resistance in tumors, and aims to provide new ideas for the prevention or treatment of tumor resistance.
Key words:    exosomes    tumor    tumor microenvironment    drug resistance   
收稿日期: 2018-11-13
DOI: 10.16438/j.0513-4870.2018-1025
基金项目: 国家自然科学基金资助项目(81402266);河南省科技攻关计划项目(162102410057).
通讯作者: 李朵璐
Email: dorali1979@126.com
相关功能
PDF(421KB) Free
打印本文
0
作者相关文章
张如月  在本刊中的所有文章
周玉冰  在本刊中的所有文章
杨哲  在本刊中的所有文章
郭金秀  在本刊中的所有文章
李朵璐  在本刊中的所有文章

参考文献:
[1] Raposo G, Stoorvogel W. Extracellular vesicles:exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200:373-383.
[2] Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance:a comprehensive review[J]. Cancer Metastasis Rev, 2013, 32:623-642.
[3] Yuan P, Guo XC, Zhang JP, et al. Research progress of the exosomes as drug delivery vehicles of Chinese herbal drugs[J]. Acta Pharm Sin (药学学报), 2017, 52:1667-1672.
[4] Zhuo X, Chang A, Huang C, et al. Expression and clinical significance of microvessel density and its association with TWIST in nasopharyngeal carcinoma[J]. Int J Clin Exp Med, 2015, 8:1265-1270.
[5] Yu DD, Wu Y, Shen HY, et al. Exosomes in development, metastasis and drug resistance of breast cancer[J]. Cancer Sci, 2015, 106:959-964.
[6] Sheridan C. Exosome cancer diagnostic reaches market[J]. Nat Biotechnol, 2016, 34:359-360.
[7] Taylor DD, Lyons KS, Gercel-Taylor C. Shed membrane fragment-associated markers for endometrial and ovarian cancers[J]. Gynecol Oncol, 2002, 84:443-448.
[8] Balaj L, Lessard R, Dai L, et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences[J]. Nat Commun, 2011, 2:180.
[9] Pan BT, Teng K, Wu C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes[J]. J Cell Biol, 1985, 101:942-948.
[10] Chevillet JR, Kang Q, Ruf IK, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes[J]. Proc Natl Acad Sci U S A, 2014, 111:14888-14893.
[11] Caby MP, Lankar D, Vincendeau-Scherrer C, et al. Exosomal-like vesicles are present in human blood plasma[J]. Int Immunol, 2005, 17:879-887.
[12] Shi R, Wang PY, Li XY, et al. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients[J]. Oncotarget, 2015, 6:26971-26981.
[13] Admyre C, Johansson SM, Qazi KR, et al. Exosomes with immune modulatory features are present in human breast milk[J]. J Immunol, 2007, 179:1969-1978.
[14] Stranford DM, Leonard JN. Delivery of biomolecules via extracellular vesicles:a budding therapeutic strategy[J]. Adv Genet, 2017, 98:155-175.
[15] Poliakov A, Spilman M, Dokland T, et al. Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen[J]. Prostate, 2009, 69:159-167.
[16] Blanchard N, Lankar D, Faure F, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex[J]. J Immunol, 2002, 168:3235-3241.
[17] Vyas N, Dhawan J. Exosomes:mobile platforms for targeted and synergistic signaling across cell boundaries[J]. Cell Mol Life Sci, 2017, 74:1567-1576.
[18] Hede K. Environmental protection:studies highlight importance of tumor microenvironment[J]. J Natl Cancer Inst, 2004, 96:1120-1121.
[19] Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation[J]. Cell, 2011, 144:646-674.
[20] Cho JA, Park H, Lim EH, et al. Exosomes from ovarian cancer cells induce adipose tissue-derived mesenchymal stem cells to acquire the physical and functional characteristics of tumor-supporting myofibroblasts[J]. Gynecol Oncol, 2011, 123:379-386.
[21] Chowdhury R, Webber JP, Gurney M, et al. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts[J]. Oncotarget, 2015, 6:715-731.
[22] Shalapour S, Karin M. Immunity, inflammation, and cancer:an eternal fight between good and evil[J]. J Clin Invest, 2015, 125:3347-3355.
[23] Mrizak D, Martin N, Barjon C, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells[J]. J Natl Cancer Inst, 2015, 107:363.
[24] Lundholm M, Schroder M, Nagaeva O, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells:mechanism of immune evasion[J]. PLoS One, 2014, 9:e108925.
[25] Binenbaum Y, Fridman E, Yaari Z, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma[J]. Cancer Res, 2018, 78:5287-5299.
[26] Mikamori M, Yamada D, Eguchi H, et al. MicroRNA-155 controls exosome synthesis and promotes gemcitabine resistance in pancreatic ductal adenocarcinoma[J]. Sci Rep, 2017, 7:42339.
[27] Chen WX, Liu XM, Lv MM, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs[J]. PLoS One, 2014, 9:e95240.
[28] Huang L, Zeng L, Chu J, et al. Chemoresistance related long noncoding RNA expression profiles in human breast cancer cells[J]. Mol Med Rep, 2018, 18:243-253.
[29] Xu CG, Yang MF, Ren YQ, et al. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells[J]. Eur Rev Med Pharmacol Sci, 2016, 20:4362-4368.
[30] Lv MM, Zhu XY, Chen WX, et al. Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein[J]. Tumour Biol, 2014, 35:10773-10779.
[31] Ning K, Wang T, Sun X, et al. UCH-L1-containing exosomes mediate chemotherapeutic resistance transfer in breast cancer[J]. J Surg Oncol, 2017, 115:932-940.
[32] Weiner-Gorzel K, Dempsey E, Milewska M, et al. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells[J]. Cancer Med, 2015, 4:745-758.
[33] Liu T, Chen G, Sun D, et al. Exosomes containing miR-21 transfer the characteristic of cisplatin resistance by targeting PTEN and PDCD4 in oral squamous cell carcinoma[J]. Acta Biochim Biophys Sin, 2017, 49:808-816.
[34] Kang M, Ren M, Li Y, et al. Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA[J]. J Exp Clin Cancer Res, 2018, 37:171.
[35] Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA[J]. Cancer Cell, 2016, 29:653-668.
[36] Takahashi K, Yan IK, Kogure T, et al. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer[J]. FEBS Open Bio, 2014, 4:458-467.
[37] Zhang W, Cai X, Yu J, et al. Exosome-mediated transfer of lncRNA RP11838N2.4 promotes erlotinib resistance in non-small cell lung cancer[J]. Int J Oncol, 2018, 53:527-538.
[38] Fan Y, Shen B, Tan M, et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling[J]. FEBS J, 2014, 281:1750-1758.
[39] Zhang S, Zhang Y, Qu J, et al. Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells[J]. Braz J Med Biol Res, 2017, 51:e6472.
[40] He QY. Tumor heterogeneity and drug resistance of targeted antitumor agents[J]. Acta Pharm Sin (药学学报), 2016, 51:197-201.
[41] Kibria G, Hatakeyama H, Harashima H. Cancer multidrug resistance:mechanisms involved and strategies for circumvention using a drug delivery system[J]. Arch Pharm Res, 2014, 37:4-15.
[42] Deng H, Zhang J, Shi J, et al. Role of long non-coding RNA in tumor drug resistance[J]. Tumour Biol, 2016, 37:11623-11631.
[43] Fan Q, Yang L, Zhang X, et al. The emerging role of exosome-derived non-coding RNAs in cancer biology[J]. Cancer Lett, 2018, 414:107-115.
[44] Liu H, Li Z, Wang C, et al. Expression of long non-coding RNA-HOTAIR in oral squamous cell carcinoma Tca8113 cells and its associated biological behavior[J]. Am J Transl Res, 2016, 8:4726-4734.
[45] Wang Y, Zhang L, Zheng X, et al. Long non-coding RNA LINC00161 sensitises osteosarcoma cells to cisplatin-induced apoptosis by regulating the miR-645-IFIT2 axis[J]. Cancer Lett, 2016, 382:137-146.
[46] Yan J, Cheng Y, Chen J. Chemoresistance and non-coding RNA[J]. Chin J Pathol (中华病理学杂志), 2016, 45:498-500.
[47] Saleem SN, Abdel-Mageed AB. Tumor-derived exosomes in oncogenic reprogramming and cancer progression[J]. Cell Mol Life Sci, 2015, 72:1-10.
[48] Hu W, Tan C, He Y, et al. Functional miRNAs in breast cancer drug resistance[J]. Onco Targets Ther, 2018, 11:1529-1541.
[49] Kunej T, Obsteter J, Pogacar Z, et al. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring[J]. Crit Rev Clin Lab Sci, 2014, 51:344-357.
[50] Wang W, Zou L, Zhou D, et al. Overexpression of ubiquitin carboxyl terminal hydrolase-L1 enhances multidrug resistance and invasion/metastasis in breast cancer by activating the MAPK/Erk signaling pathway[J]. Mol Carcinog, 2016, 55:1329-1342.
[51] Lobb RJ, van Amerongen R, Wiegmans A, et al. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance[J]. Int J Cancer, 2017, 141:614-620.
[52] Au Yeung CL,Co NN, Tsuruga T, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1[J]. Nat Commun, 2016, 7:11150.
[53] Wang J, Zhang L, Kang D, et al. Activation of PGE2/EP2 and PGE2/EP4 signaling pathways positively regulate the level of PD-1 in infiltrating CD8(+) T cells in patients with lung cancer[J]. Oncol Lett, 2018, 15:552-558.
[54] Ji R, Zhang B, Zhang X, et al. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer[J]. Cell Cycle, 2015, 14:2473-2483.
[55] Shedden K, Xie XT, Chandaroy P, et al. Expulsion of small molecules in vesicles shed by cancer cells:association with gene expression and chemosensitivity profiles[J]. Cancer Res, 2003, 63:4331-4337.
[56] Sharma A. Chemoresistance in cancer cells:exosomes as potential regulators of therapeutic tumor heterogeneity[J]. Nanomedicine (Lond), 2017, 12:2137-2148.
[57] Chen F, Zhang W, Song S, et al. The influence of exosomes derived from tumor cells and stromal cells on tumor drug resistance[J]. Chin J Cancer Biother (中国肿瘤生物治疗杂志), 2016, 23:432-436.
[58] Koch R, Aung T, Vogel D, et al. Nuclear trapping through inhibition of exosomal export by indomethacin increases cytostatic efficacy of doxorubicin and pixantrone[J]. Clin Cancer Res, 2016, 22:395-404.
[59] Chapuy B, Koch R, Radunski U, et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration[J]. Leukemia, 2008, 22:1576-1586.
[60] Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes:current perspectives and future challenges[J]. Acta Pharm Sin B, 2016, 6:287-296.
[61] Wang X, Zhang H, Bai M, et al. Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer[J]. Mol Ther, 2018, 26:774-783.
[62] Aung T, Chapuy B, Vogel D, et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3[J]. Proc Natl Acad Sci U S A, 2011, 108:15336-15341.
[63] Zhang J, Zhang HD, Yao YF, et al. β-Elemene reverses chemoresistance of breast cancer cells by reducing resistance transmission via exosomes[J]. Cell Physiol Biochem, 2015, 36:2274-2286.
相关文献:
1.陈风飞, 李欣欣, 孙立, 马晓慧, 袁胜涛.肿瘤微环境及相关靶向药的研究进展[J]. 药学学报, 2018,53(5): 676-683
2.陈敏, 吴梅岭, 范颖, 伍雯.一氧化氮负载的纳米材料作为化疗药物载体逆转肿瘤多药耐药性的研究进展[J]. 药学学报, 2018,53(10): 1630-1636
3.周丹丹, 余娇娇, 花芳, 胡卓伟.巨噬细胞迁移抑制因子,连接炎症和肿瘤的关键蛋白[J]. 药学学报, 2018,53(11): 1761-1769
4.苏日娜, 刘腾飞, 朱秀梅, 周建平, 姚静.基于TPGS的纳米递药系统在逆转P-糖蛋白介导肿瘤多药耐药中的应用[J]. 药学学报, 2018,53(11): 1797-1807
5.杨艳芳, 孟盈盈, 叶军, 夏学军, 李琳, 董武军, 王洪亮, 刘玉玲.模拟体内肿瘤微环境的乳腺癌细胞与脐静脉内皮细胞的体外共培养[J]. 药学学报, 2018,53(3): 403-409
6.韩雨衡, 来兴欢, 乐子薇, 华子春.肿瘤靶向性沙门氏菌VNP20009抗肿瘤作用及其对肿瘤免疫微环境的影响[J]. 药学学报, 2016,51(9): 1417-1422
7.何琪杨.肿瘤异质性与抗肿瘤靶向药物的耐药性[J]. 药学学报, 2016,51(2): 197-201
8.陈淑珍.和厚朴酚的抗肿瘤实验治疗及其分子作用靶点的研究进展[J]. 药学学报, 2016,51(2): 202-207
9.高会乐, 蒋新国.肿瘤靶向递药新策略的研究进展[J]. 药学学报, 2016,51(2): 272-280
10.刘 岸 胡云双 王兆洪 唐莉莉 柯品妤 林胜璋.NF-κB在大黄素增强胰腺癌吉西他滨化疗敏感性中的作用[J]. 药学学报, 2011,46(2): 146-152
11.王永中;方晓玲;李雅娟;张志文;韩丽妹;沙先谊.紫杉醇Pluronic P105聚合物胶束的制备、表征与逆转肿瘤多药耐药性的体外研究[J]. 药学学报, 2008,43(6): 640-646
12.陈瑛;夏鹏;张倩;郑云红;夏奕;杨征宇.DROLOXIFENE枸橼酸盐的工艺改进及其新的生物活性[J]. 药学学报, 2000,35(12): 902-905