药学学报, 2019, 54(4): 620-628
引用本文:
汪昭, Desta SAMUEL, 康东伟, 展鹏, 刘新泳. 以蛋白质-蛋白质相互作用为靶点的HIV抑制剂的研究进展[J]. 药学学报, 2019, 54(4): 620-628.
WANG Zhao, SAMUEL Desta, KANG Dong-wei, ZHAN Peng, LIU Xin-yong. The progress in the development of HIV inhibitors targeting protein-protein interactions[J]. Acta Pharmaceutica Sinica, 2019, 54(4): 620-628.

以蛋白质-蛋白质相互作用为靶点的HIV抑制剂的研究进展
汪昭, Desta SAMUEL, 康东伟, 展鹏, 刘新泳
山东大学药学院药物化学研究所, 化学生物学教育部重点实验室, 山东 济南 250012
摘要:
蛋白质-蛋白质相互作用(protein-protein interaction,PPI)在人免疫缺陷病毒(human immunodeficiency virus,HIV)生命周期中的多个阶段发挥重要作用。针对这些相互作用特别是HIV与宿主细胞之间的相互作用为我们研发靶向于新结合位点和具有新作用机制的HIV抑制剂提供了新思路。因此本综述基于多种蛋白质-蛋白质相互作用的作用机制,结合具体研究实例阐述了该类抑制剂的最新研究进展。
关键词:    艾滋病      HIV      蛋白质-蛋白质相互作用      抑制剂     
The progress in the development of HIV inhibitors targeting protein-protein interactions
WANG Zhao, SAMUEL Desta, KANG Dong-wei, ZHAN Peng, LIU Xin-yong
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
Protein-protein interaction (PPI) plays an important role in many steps of the human immunodeficiency virus (HIV) life cycle. Targeting these protein-protein interactions, especially the interaction between the virus with host cells, can provide new insights into the development of HIV inhibitors with novel mechanisms of action. Herein, we review the latest discoveries of PPI inhibitors based on the mechanisms of action of various protein-protein interactions with specific research examples.
Key words:    AIDS    HIV    protein-protein interaction    inhibitor   
收稿日期: 2019-01-16
DOI: 10.16438/j.0513-4870.2019-0050
基金项目: 国家自然科学基金资助项目(81420108027,81573347);2017年山东省重点研发计划(2017CXGC1401).
通讯作者: 刘新泳
Email: xinyongl@sdu.edu.cn
相关功能
PDF(578KB) Free
打印本文
0
作者相关文章
汪昭  在本刊中的所有文章
Desta SAMUEL  在本刊中的所有文章
康东伟  在本刊中的所有文章
展鹏  在本刊中的所有文章
刘新泳  在本刊中的所有文章

参考文献:
[1] De Clercq E, Li G. Approved antiviral drugs over the past 50 years[J]. Clin Microbiol Rev, 2016, 29:695-747.
[2] Huo ZP, Zuo XF, Kang DW, et al. Progress on AIDS drug targets and small molecule inhibitors[J]. Acta Pharm Sin (药学学报), 2018, 53:356-374.
[3] Tavassoli A. Targeting the protein-protein interactions of the HIV lifecycle[J]. Chem Soc Rev, 2011, 40:1337-1346.
[4] Tintori C, Brai A, Fallacara AL, et al. Protein-protein interactions and human cellular cofactors as new targets for HIV therapy[J]. Curr Opin Pharmacol, 2014, 18:1-8.
[5] Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins:fusogens, antigens, and immunogens[J]. Science, 1998, 280:1884-1888.
[6] Wang T, Zhang Z, Wallace OB, et al. Discovery of 4-benzoyl-1-[(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2-(R)-methylpiperazine (BMS-378806):a novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions[J]. J Med Chem, 2003, 46:4236-4239.
[7] Wang T, Yin Z, Zhang Z, et al. Inhibitors of human immunodeficiency virus type 1(HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects[J]. J Med Chem, 2009, 52:7778-7787.
[8] Wang T, Ueda Y, Zhang Z, et al. Discovery of the human immunodeficiency virus type 1(HIV-1) attachment inhibitor temsavir and its phosphonooxymethyl prodrug fostemsavir[J]. J Med Chem, 2018, 61:6308-6327.
[9] Kharsany ABM, Cawood C, Khanyile D. Community-based HIV prevalence in KwaZulu-Natal, South Africa:results of a cross-sectional household survey[J]. Lancet HIV, 2018, 5:e427-e437.
[10] Zhao Q, Ma L, Jiang S, et al. Identification of N-phenyl-N'-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4[J]. Virology, 2005, 339:213-225.
[11] Curreli F, Kwon YD, Zhang H, et al. Structure-based design of a small molecule cd4-antagonist with broad spectrum anti-HIV-1 activity[J]. J Med Chem, 2015, 58:6909-6927.
[12] Curreli F, Kwon YD, Belov DS, et al. Synthesis, antiviral potency, in vitro ADMET, and X-ray structure of potent CD4 mimics as entry inhibitors that target the Phe43 Cavity of HIV-1 gp120[J]. J Med Chem, 2017, 60:3124-3153.
[13] Mostashari Rad T, Saghaie L, Fassihi A. HIV-1 entry inhibitors:a review of experimental and computational studies[J]. Chem Biodivers, 2018, 15:e1800159.
[14] Guo ZR. Maraviroc, the first drug to inhibit the invasion of HIV-1 virus[J]. Acta Pharm Sin (药学学报), 2016, 51:839-842.
[15] Stupple PA, Batchelor DV, Corless M, et al. An imidazopiperidine series of CCR5 antagonists for the treatment of HIV:the discovery of N-{(1S)-1-(3-fluorophenyl)-3-[(3-endo)-3-(5-isobutyryl-2-methyl-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridin-1-yl)-8-azabicyclo[3.2.1] oct-8-yl]propyl}acetamide (PF-232798)[J]. J Med Chem, 2011, 54:67-77.
[16] Peng P, Chen H, Zhu Y, et al. Structure-based design of 1-heteroaryl-1,3-propanediamine derivatives as a novel series of CC-chemokine receptor 5 antagonists[J]. J Med Chem, 2018, 61:9621-9636.
[17] Lu L, Yu F, Cai L, et al. Development of small-molecule HIV entry inhibitors specifically targeting gp120 or gp41[J]. Curr Top Med Chem, 2016, 16:1074-1090.
[18] Matthews T, Salgo M, Greenberg M, et al. Enfuvirtide:the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes[J]. Nat Rev Drug Discov, 2004, 3:215-225.
[19] Zhou G, Wu D, Snyder B, et al. Development of indole compounds as small molecule fusion inhibitors targeting HIV-1 glycoprotein-41[J]. J Med Chem, 2011, 54:7220-7231.
[20] Zhou G, Sofiyev V, Kaur H, et al. Structure-activity relationship studies of indole-based compounds as small molecule HIV-1 fusion inhibitors targeting glycoprotein 41[J]. J Med Chem, 2014, 57:5270-5281.
[21] Zhou G, Chu S, Nemati A, et al. Investigation of the molecular characteristics of bisindole inhibitors as HIV-1 glycoprotein-41 fusion inhibitors[J]. Eur J Med Chem, 2019, 161:533-542.
[22] Zhou ZX, Sun L, Kang DW, et al. Progress on HIV-1 RT inhibitors with novel mechanism of action[J]. Acta Pharm Sin (药学学报), 2018, 53:691-700.
[23] Divita G, Restle T, Goody RS, et al. Inhibition of human immunodeficiency virus type 1 reverse transcriptase dimerization using synthetic peptides derived from the connection domain[J]. J Biol Chem, 1994, 269:13080-13083.
[24] Morris MC, Robert-Hebmann V, Chaloin L, et al. A new potent HIV-1 reverse transcriptase inhibitor. A synthetic peptide derived from the interface subunit domains[J]. J Biol Chem, 1999, 274:24941-24946.
[25] Balzarini J, Pérez-Pérez MJ, San-Félix A, et al. 2',5'-Bis-O-(tert-butyldimethylsilyl)-3'-spiro-5"-(4"-amino-1",2"-oxathiole-2",2'-dioxide)pyrimidine (TSAO) nucleoside analogues:highlyselective inhibitors of human immunodeficiency virus type 1 that are targeted at the viral reverse transcriptase[J]. Proc Natl Acad Sci U S A, 1992, 89:4392-4396.
[26] Sluis-Cremer N, Dmitrienko GI, Balzarini J, et al. Human immunodeficiency virus type 1 reverse transcriptase dimer destabilization by 1-[Spiro[4"-amino-2",2"-dioxo-1",2"-oxathiole-5",3'-[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]]]-3-ethylthy mine[J]. Biochemistry, 2000, 39:1427-1433.
[27] Sluis-Cremer N, Hamamouch N, San Félix A, et al. Structure-activity relationships of[2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide)thymine derivatives as inhibitors of HIV-1 reverse transcriptase dimerization[J]. J Med Chem, 2006, 49:4834-4841.
[28] Das K, Bauman JD, Rim AS, et al. Crystal structure of tert-butyldimethylsilyl-spiroaminooxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket[J]. J Med Chem, 2011, 54:2727-2737.
[29] Hayashi H, Takamune N, Nirasawa T, et al. Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir[J]. Proc Natl Acad Sci U S A, 2014, 111:12234-12239.
[30] Bouras A, Boggetto N, Benatalah Z, et al. Design, synthesis, and evaluation of conformationally constrained tongs, new inhibitors of HIV-1 protease dimerization[J]. J Med Chem, 1999, 42:957-962.
[31] Merabet N, Dumond J, Collinet B, et al. New constrained "molecular tongs" designed to dissociate HIV-1 protease dimer[J]. J Med Chem, 2004, 47:6392-6400.
[32] Bannwarth L, Kessler A, Pèthe S, et al. Molecular tongs containing amino acid mimetic fragments:new inhibitors of wild-type and mutated HIV-1 protease dimerization[J]. J Med Chem, 2006, 49:4657-4664.
[33] Dufau L, Marques Ressurreição AS, Fanelli R, et al. Carbonylhydrazide-based molecular tongs inhibit wild-type and mutated HIV-1 protease dimerization[J]. J Med Chem, 2012, 55:6762-6775.
[34] Blokken J, De Rijck J, Christ F, et al. Protein-protein and protein-chromatin interactions of LEDGF/p75 as novel drug targets[J]. Drug Discov Today Technol, 2017, 24:25-31.
[35] Du L, Zhao Y, Chen J, et al. D77, one benzoic acid derivative, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular LEDGF/p75[J]. Biochem Biophys Res Commun, 2008, 375:139-144.
[36] Christ F, Voet A, Marchand A, et al. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication[J]. Nat Chem Biol, 2010, 6:442-448.
[37] Zhang FH, Debnath B, Xu ZL, et al. Discovery of novel 3-hydroxypicolinamides as selective inhibitors of HIV-1 integrase-LEDGF/p75 interaction[J]. Eur J Med Chem, 2017, 125:1051-1063.
[38] Serrao E, Debnath B, Otake H, et al. Fragment-based discovery of 8-hydroxyquinoline inhibitors of the HIV-1 integrase-lens epithelium-derived growth factor/p75(IN-LEDGF/p75) interaction[J]. J Med Chem, 2013, 56:2311-2322.
[39] Wang SQ, Liu XY. Structure and function of HIV-1 adjuvant regulatory protein Vpu[J]. Chem Life (生命的化学), 2007, 27:33-36.
[40] Mi Z, Ding J, Zhang Q, et al. A small molecule compound IMB-LA inhibits HIV-1 infection by preventing viral Vpu from antagonizing the host restriction factor BST-2[J]. Sci Rep, 2015, 5:18499.
相关文献:
1.周忠霞, 孙林, 康东伟, 陈子慧, 唐苗苗, 李思雨, 展鹏, 刘新泳.具有新作用机制的HIV-1逆转录酶抑制剂研究进展[J]. 药学学报, 2018,53(5): 691-700
2.霍志鹏, 左晓芳, 康东伟, 展鹏, 刘新泳.抗艾滋病药物新靶标及其小分子抑制剂的研究进展[J]. 药学学报, 2018,53(3): 356-374
3.贾海永, 俞霁, 刘昕浩, 张健, 展鹏, 刘新泳.HIV-1核壳体蛋白NCp7抑制剂研究新进展[J]. 药学学报, 2017,52(11): 1652-1659
4.王萍, 张高红, 向思颖, 杨柳萌, 唐成润, 马晓东, 郑永唐.二甲苯酮类非核苷类逆转录酶抑制剂的体外抗HIV-1活性[J]. 药学学报, 2016,51(11): 1704-1710
5.李俊, 王巍.HIV衣壳蛋白结构及其药物小分子研究进展[J]. 药学学报, 2015,50(9): 1088-1095
6.刘 鸿, 展 鹏, 刘新泳.HIV-1逆转录酶和整合酶双靶点抑制剂研究进展[J]. 药学学报, 2013,48(4): 466-476
7.张大为, 赵明明, 陈 娟, 李 超, 郭顺星.西藏药用植物螃蟹甲可培养内生真菌的分离、鉴定及抗HIV-1整合酶链转移活性研究[J]. 药学学报, 2013,48(5): 780-789
8.杨 颖, 曹颖莉, 刘海洋, 严 欢, 郭 颖.银线草醇F: 一种新结构类型HIV-1逆转录酶RNase H活性抑制剂[J]. 药学学报, 2012,47(8): 1011-1016
9.王 柳, 展 鹏, 刘新泳.结构优化策略在HIV非核苷类逆转录酶抑制剂设计中的应用[J]. 药学学报, 2012,47(11): 1409-1422
10.郑朴荣 薛海 肖志艳 刘刚.2005-2008年抗HIV-1化学治疗新药的重要研究进展[J]. 药学学报, 2010,45(2): 154-164
11.史卫国 贾启燕 刘克良.HIV-1融合抑制剂研究现状及发展趋势[J]. 药学学报, 2010,45(2): 184-193
12.张旋 黄宁 郑永唐.我国中药来源的抗HIV天然化合物研究进展[J]. 药学学报, 2010,45(2): 141-153
13.张 全 李晓宇 刘振龙 贾平平 魏晓露 赵立勋 蒋建东 岑山.HIV-1前体蛋白早成熟化激活剂筛选模型的建立及应用[J]. 药学学报, 2010,45(2): 247-252
14.刘振龙 李晓宇 张全 贾平平 杨亮 魏晓露 蒋建东 岑山.以病毒RNA核转运为靶点的抗HIV-1药物筛选模型的建立及应用[J]. 药学学报, 2010,45(2): 257-262
15.李泽琳 曾 越 苏立山 张小梅 邵一鸣 曾 欣 WOLF Hans 曾 毅.中药复方祛毒增宁胶囊抗艾滋病毒体外药效学的研究[J]. 药学学报, 2010,45(2): 253-256
16.李震宇 展鹏 刘新泳.HIV-1病毒感染因子Vif及其相关抑制剂的研究进展[J]. 药学学报, 2010,45(6): 684-693
17.熊远珍 胡海荣 陈芬儿 Jan Balzarini Christophe Pannecouque Erik De Clercq.非核苷类逆转录酶抑制剂的研究XVⅢ: 4-烯丙基和4-叠氮基取代的三嗪类化合物的合成及抗HIV活性[J]. 药学学报, 2009,44(2): 145-149
18.秦炳杰 周婷 陆虹 姜世勃 谢蓝.非核苷类HIV-1逆转录酶抑制剂----二芳烃取代苯并咪唑类衍生物的设计、合成和活性评价[J]. 药学学报, 2009,44(11): 1233-1243
19.王珺 刘新泳.蛋白磷酸酶1对HIV-1转录的调节作用及其抑制剂研究[J]. 药学学报, 2009,44(12): 1343-1347
20.郭焕芳;谢蓝.新型非核苷类HIV逆转录酶抑制剂DCK的研究进展[J]. 药学学报, 2008,43(10): 997-1002
21.曹颖莉;郭颖.应用假病毒技术研究HIV-1复制抑制剂[J]. 药学学报, 2008,43(3): 253-258
22.曹原;刘新泳.HIV-1 Rev蛋白及相关抑制剂[J]. 药学学报, 2007,42(4): 347-351
23.于明艳;刘新泳.HIV-1的转录因子NF-κB及其抑制剂的研究进展[J]. 药学学报, 2007,42(10): 1007-1012
24.白如珺;刘新泳.HIV-1转录反式激活及其抑制剂[J]. 药学学报, 2006,41(4): 289-295
25.惠斌;耿美玉;李静.硫酸多糖聚甘古酯抑制HIV-1反式转录调节蛋白诱导的THP-1细胞炎症细胞因子释放及机制探讨[J]. 药学学报, 2006,41(4): 338-341
26.王超;赵桂森.芳基β-二酮酸类HIV-1整合酶抑制剂研究进展[J]. 药学学报, 2006,41(9): 801-807
27.杨勤刚;何煦昌;白东鲁.HIV蛋白酶抑制剂研究进展[J]. 药学学报, 2005,40(5): 389-394
28.周婷;谢蓝;.HIV非核苷类逆转录酶抑制剂研究进展[J]. 药学学报, 2004,39(8): 666-672
29.陈昕;王琳;赵知中;陈湘红;张兴权;陈鸿珊.1-(3-酞酰亚胺基-2-氧丁基)-4-取代苯基哌嗪的合成及抗HIV-1逆转录酶活性[J]. 药学学报, 2002,37(5): 343-347
30.郭志敏;陈鸿珊;王琳.多羟基芳香族化合物对HIV-1整合酶的抑制作用[J]. 药学学报, 2002,37(4): 253-256
31.陶国新;李兰燕;迟翰林.小分子非肽类HIV蛋白酶抑制剂的计算机辅助分子设计[J]. 药学学报, 2000,35(4): 265-268
32.黄流生;陶国新;李兰燕;迟翰林.HIV-1蛋白酶解聚型抑制剂的计算机辅助分子设计[J]. 药学学报, 1999,34(5): 353-357
33.高琦;王琳;赵知中.非肽类HIV蛋白酶抑制剂的研究进展[J]. 药学学报, 1999,34(8): 635-640