药学学报, 2019, 54(4): 629-637
引用本文:
黄梦瑶, 杨旭, 邢金峰, 魏振平. 纳米级脑靶向递药系统的靶向性提升策略[J]. 药学学报, 2019, 54(4): 629-637.
HUANG Meng-yao, YANG Xu, XING Jin-feng, WEI Zhen-ping. Strategies for enhancing nanoscale brain targeting drug delivery[J]. Acta Pharmaceutica Sinica, 2019, 54(4): 629-637.

纳米级脑靶向递药系统的靶向性提升策略
黄梦瑶, 杨旭, 邢金峰, 魏振平
天津大学化工学院, 天津 300350
摘要:
血脑屏障能选择性阻滞外周血液中的物质进入脑内,这对于维持脑内环境稳定十分重要,但同时会阻碍治疗药物向脑内递送。被动脑靶向递药系统可以通过增强与血脑屏障细胞的亲和力及减弱P-糖基蛋白对药物的外排来提高脑内药物浓度;在被动靶向递药系统上结合特异性配体或抗体得到的主动脑靶向递药系统,能更精准地实现药物向脑内靶向递送;脑靶向联合肿瘤细胞靶向得到的双级靶向递药系统,对脑部肿瘤的治疗已显示出其独特优势。脑靶向递药系统将为阿尔茨海默病、脑肿瘤及中风等脑部疾病的治疗提供一种独特方式。在介绍被动型、主动型脑靶向及双级脑靶向递药系统的同时,本文重点对降低载体粒径、打开血脑屏障细胞间的紧密连接、于载体表面键合亲水性基团及鼻腔给药等提高药物脑内递送效率的策略进行了展望。
关键词:    血脑屏障      纳米级      递药系统      双级脑靶向      靶向性提升策略     
Strategies for enhancing nanoscale brain targeting drug delivery
HUANG Meng-yao, YANG Xu, XING Jin-feng, WEI Zhen-ping
School of Chemical Engineering, Tianjin University, Tianjin 300350, China
Abstract:
The blood brain barrier can selectively block the uptake of xenobiotics from peripheral blood into the brain. Although this is important for maintaining the stability of the brain environment and normal function of the central nervous system, it presents a challenge for delivery of therapeutic drugs to the brain. Passive brain-targeting drug carrier is able to increase the drug concentration in the brain by enhancing the affinity to blood-brain barrier and/or inhibiting the efflux absorbed drug via P-glycoprotein. The active brain-targeting drug carrier can be obtained by linking specific ligands or antibodies onto passive target carriers to achieve precise delivery of drugs to the brain. Dual targeting drug carriers obtained by combining tumor cell targeting with brain targeting have shown their advantages for treatment of brain tumors. The targeted drug delivery to brain will provide a unique manner for the treatment of brain diseases such as Alzheimer's, Parkinson's, brain tumors, and stroke. Among the drug delivery systems of passive brain-targeting, active brain-targeting and dual brain-targeting, we evaluated the strategies to improve brain drug delivery efficiency, such as by reducing carrier size, opening tight junctions between cells at the blood-brain barrier, incorporating hydrophilic groups on the surface of the carrier, and alternative intranasal drug administration.
Key words:    blood brain barrier    nanoscale    drug delivery system    dual brain-targeting    target ability enhancing strategy   
收稿日期: 2018-10-11
DOI: 10.16438/j.0513-4870.2018-0915
基金项目: 天津市自然科学基金资助项目(14JCYBJC29100).
通讯作者: 魏振平
Email: zpwei2000@sina.com
相关功能
PDF(568KB) Free
打印本文
0
作者相关文章
黄梦瑶  在本刊中的所有文章
杨旭  在本刊中的所有文章
邢金峰  在本刊中的所有文章
魏振平  在本刊中的所有文章

参考文献:
[1] Canfield SG, Stebbins MJ, Morales BS, et al. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells[J]. J Neurochem, 2017, 140:874-888.
[2] Liu Y, Jiang C. Research advances in brain-targeted nanoscale drug delivery system[J]. Acta Pharm Sin (药学学报), 2013, 48:1532-1543.
[3] Alexander JJ. Blood-brain barrier (BBB) and the complement landscape[J]. Mol Immunol, 2018, 102:26-31.
[4] Khan AI,Liu J, Dutta P. Iron transport kinetics through blood-brain barrier endothelial cells[J]. Biochim Biophys Acta, 2018, 1862:1168-1179.
[5] Agrawal M,Ajazuddin, Tripathi DK, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer's disease[J]. J Control Release, 2017, 260:61-77.
[6] Wang JP, Wang W, Zhang WY. Study on distribution and targeting of Gardenia jasminoides extract niosomes in rats[J]. China Pharm (中国药房), 2016, 27:473-475.
[7] Zhan WB, Wang CH. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumor therapy[J]. J Control Release, 2018, 285:212-229.
[8] Vijayakumar MR, Kosuru R, Vuddanda PR, et al. Trans resveratrol loaded DSPE PEG 2000 coated liposomes:an evidence for prolonged systemic circulation and passive brain targeting[J]. J Drug Deliv Sci Technol, 2016, 33:125-135.
[9] Pardakhty A, Moazeni E. Nano-niosomes in drug vaccine and gene delivery:a rapid overview[J]. Nanomed J, 2013, 1:1-13.
[10] Callender SP, Mathews JA, Kobernyk K, et al. Microemulsion utility in pharmaceuticals:implications for multi-drug delivery[J]. Int J Pharm, 2017, 526:425-442.
[11] Đorđević SM, Cekić ND, Savić MM, et al. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone:design, characterization and in vivo pharmacokinetic evaluation[J]. Int J Pharm, 2015, 493:40-54.
[12] Tan SF, Kirby BP, Stanslas J, et al. Characterization in-vitro and in-vivo evaluation of valproic acid-loaded nanoemulsion for improved brain bioavailability[J]. J Pharm Pharmacol, 2017, 69:1447-1457.
[13] Chen ZL, Huang M, Wang XR, et al. Transferrin-modified liposome promotes α-mangostin to penetrate the blood-brain barrier[J]. Nanomedicine, 2016, 12:421-430.
[14] Li HM, Tong YN, Bai L, et al. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma[J]. Int J Biol Macromol, 2018, 107:204-211.
[15] Mortensen JH, Jeppesen M, Pilgaard L, et al. Targeted antiepidermal growth factor receptor (cetuximab) immunoliposomes enhance cellular uptake in vitro and exhibit increased accumulation in an intracranial model of glioblastoma multiforme[J]. J Drug Deliv, 2013, 2013:209205.
[16] Zhang C, Wan X, Zheng X, et al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer's disease mice[J]. Biomaterials, 2014, 35:456-465.
[17] Kim JY, Choi WI, Kim YH, et al. Brain-targeted delivery of protein using chitosan-and RVG peptide-conjugated, pluronic-based nano-carrier[J]. Biomaterials, 2013, 34:1170-1178.
[18] Rotman M, Welling MM, Bunschoten A, et al. Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer's disease[J]. J Control Release, 2015, 203:40-50.
[19] Qu B, Li X, Guan M, et al. Design, synthesis and biological evaluation of multivalent glucosides with high affinity as ligands for brain targeting liposomes[J]. Eur J Med Chem, 2014, 72:110-118.
[20] Liu ZD, Zhang L, He QS, et al. Effect of Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody on regulating the levels of baicalin and amino acids during cerebral ischemia-reperfusion in rats[J]. Int J Pharm, 2015, 489:131-138.
[21] Kuang YY, An S, Guo YB, et al. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting[J]. Int J Pharm, 2013, 454:11-20.
[22] Mu C, Dave N, Hu J, et al. Solubilization of flurbiprofen into aptamer-modified PEG-PLA micelles for targeted delivery to brain-derived endothelial cells in vitro[J]. J Microencapsul, 2013, 30:701-708.
[23] Gao HL, Yang Z, Zhang S, et al. Glioma-homing peptide with a cell-penetrating effect for targeting delivery with enhanced glioma localization, penetration and suppression of glioma growth[J]. J Control Release, 2013, 172:921-928.
[24] Ruan SB, Yuan MQ, Zhang L, et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles[J]. Biomaterials, 2015, 37:425-435.
[25] Huang JC, Cai HR, Jiang YQ. Construction of RGD-TAT modified liposomes and evaluation of its targeting on glioma[J]. Chin J Biochem Pharm (中国生化药物杂志), 2014, 34:1-3.
[26] Han LJ, Guo W, Liu W, et al. Primary evaluation on inhibiting effects of hyaluronic acid modified paclitaxel loaded liposome against brain tumor stem cells[J]. Chin J Hosp Pharm (中国医院药学杂志), 2015, 35:773-776.
[27] Byeon HJ, Thao LQ, Lee S, et al. Doxorubicin-loaded nanoparticles consisted of cationic-and mannose-modified-albumins for dual-targeting in brain tumors[J]. J Control Release, 2016, 225:301-313.
[28] Gao HL, Qian J, Cao SJ, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles[J]. Biomaterials, 2012, 33:5115-5123.
[29] Gao JQ, Lv Q, Li LM, et al. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes[J]. Biomaterials, 2013, 34:5628-5639.
[30] Gao HL. Progress and perspectives on targeting nanoparticles for brain drug delivery[J]. Acta Pharm Sin B, 2016, 6:268-286.
[31] Wan F, You J, Sun Y, et al. Studies on PEG-modified SLNs loading vinorelbine bitartrate (I):preparation and evaluation in vitro[J]. Int J Pharm, 2008, 359:104-110.
[32] Bi C, Miao XQ, Chow SF, et al. Particle size effect of curcumin nanosuspensions on cytotoxicity, cellular internalization, in vivo pharmacokinetics and biodistribution[J]. Nanomedicine, 2017, 13:943-953.
[33] Fu Q, Kou L, Gong C, et al. Relationship between dissolution and bioavailability for nimodipine colloidal dispersions:the critical size in improving bioavailability[J]. Int J Pharm, 2012, 427:358-364.
[34] Lv ZY, Yang YW, Wang J, et al. Optimization of the preparation conditions of borneol-modified ginkgolide liposomes by response surface methodology and study of their blood brain barrier permeability[J]. Molecules, 2018, 23:303.
[35] Youn SW, Jung KH, Chu K, et al. Feasibility and safety of intraarterial pericyte progenitor cell delivery following mannitol-induced transient blood brain barrier opening in a canine model[J]. Cell Transplant, 2015, 24:1469-1479.
[36] Bazan-Peregrino M, Rifai B, Carlisle RC, et al. Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound[J]. J Control Release, 2013, 169:40-47.
[37] Yoon YI, Yoon TJ, Lee HJ. Optimization of ultrasound parameters for microbubble-nanoliposome complex-mediated delivery[J]. Ultrasonography, 2015, 34:297-303.
[38] Chen LJ, Lu CT, Zhao YZ, et al. Ultrasonic microbubbles for glioma-targeted drug delivery[J]. Acta Pharm Sin (药学学报), 2015, 50:99-103.
[39] Liu S, Yang S, Ho PC. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain[J]. Asian J Pharm Sci, 2018, 13:72-81.
[40] Cole AJ, David AE, Wang J, et al. Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch coated iron oxide nanoparticles[J]. Biomaterials, 2011, 32:6291-6301.
[41] Zhang LK, Xu RX, Jiang M, et al. Evaluation of brain-targeting of β-asarone microemulsion by intranasal administration[J]. Chin Tradit Herb Drugs (中草药), 2014, 45:86-89.
[42] Pokharkar V, Patil-Gadhe A, Palla P. Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route:in-vivo pharmacokinetic and toxicity study[J]. Biomed Pharmacother, 2017, 94:150-164.
[43] El-Setouhy DA, Ibrahim AB, Amin MM, et al. Intranasal haloperidol-loaded miniemulsions for brain targeting:evaluation of locomotor suppression and in-vivo biodistribution[J]. Eur J Pharm Sci, 2016, 92:244-254.
[44] Narayan R, Singh M, Ranjan O, et al. Development of risperidone liposomes for brain targeting through intranasal route[J]. Life Sci, 2016, 163:38-45.
[45] Khan AR, Liu M, Khan MW, et al. Progress in brain targeting drug delivery system by nasal route[J]. J Control Release, 2017, 268:364-389.
[46] Nair A. Implications of intrathecal chemotherapy for anaesthesiologists:a brief review[J]. Scientifica, 2016, 2016:3759845.
[47] Etminan N, Macdonald RL, Davis C, et al. Intrathecal application of the nimodipine slow-release microparticle system eg-1962 for prevention of delayed cerebral ischemia and improvement of outcome after aneurysmal subarachnoid hemorrhage[J]. Acta Neurochir Suppl, 2015, 120:281-286.
[48] Song Y, Fu XL, Lan TL, et al. Local irritation study of repeated lumbar intrathecal injection of ziconotide acetate[J]. Drug Eval Res (药物评价研究), 2017, 40:54-58.
[49] Li L, Liu T, Fu C, et al. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape[J]. Nanomedicine, 2015, 11:1915-1924.