药学学报, 2019, 54(4): 714-719
引用本文:
李冬阳, 汪潇, 鲁晓蓉, 杨劲, 孙宏张. [14C]CHMFL-FLT3-122在大鼠体内的药代动力学研究[J]. 药学学报, 2019, 54(4): 714-719.
LI Dong-yang, WANG Xiao, LU Xiao-rong, YANG Jin, SUN Hong-zhang. Pharmacokinetic characteristics of[14C]CHMFL-FLT3-122 in rats[J]. Acta Pharmaceutica Sinica, 2019, 54(4): 714-719.

[14C]CHMFL-FLT3-122在大鼠体内的药代动力学研究
李冬阳1,3, 汪潇2, 鲁晓蓉2, 杨劲1, 孙宏张3
1. 中国药科大学, 江苏 南京 210009;
2. 合肥诺明药物安全研究有限公司, 安徽 合肥 230031;
3. 合肥合源药业有限公司, 安徽 合肥 230031
摘要:
为研究CHMFL-FLT3-122在大鼠体内吸收、分布、代谢和排泄过程,采用SD大鼠口服给予50 mg·kg-1[14C]CHMFL-FLT3-122后收集生物样本,以放射性检测方法测定药物含量并鉴定代谢产物,本实验通过南京美新诺医药科技有限公司的实验动物伦理委员会批准。雌雄大鼠单次口服绝对生物利用度分别为50.92%和45.83%,药物吸收后主要分布于胃肠道、肝、肺中,于给药后48 h消除完全。经粪便和尿液回收药量分别占给药量的92.34%和3.99%。研究共鉴定10个I相代谢产物和4个Ⅱ相代谢产物,主要代谢途径为N-去烃基、氧化和酰胺水解,并与硫酸和葡萄糖醛酸形成结合代谢产物。血浆中以原形为主,主要代谢产物为M553(硫酸结合产物)和M457(N-去烃基产物)。CHMFL-FLT3-122口服生物利用度良好,体内代谢广泛,组织分布无明显蓄积。
关键词:    CHMFL-FLT3-122      急性髓性白血病      体内代谢      ADME      放射性标记     
Pharmacokinetic characteristics of[14C]CHMFL-FLT3-122 in rats
LI Dong-yang1,3, WANG Xiao2, LU Xiao-rong2, YANG Jin1, SUN Hong-zhang3
1. China Pharmaceutical University, Nanjing 210009, China;
2. Hefei Blooming Drug Safety Evaluation, Co. LTD., Hefei 230031, China;
3. Hefei Cosource Pharmaceuticals Inc., Hefei 230031, China
Abstract:
The study was conducted to characterize the pharmacokinetics, distribution, metabolism and excretion of CHMFL-FLT3-122 after a single oral dose of 50 mg·kg-1[14C] labeled CHMFL-FLT3-122 in rats. Isotope tracing techniques were used to analyze drug concentration and identify the distribution of drugs in tissues and metabolites in biological samples. The experiments were approved by the Animal Ethics Committee of XenoBiotic Laboratories-China, Inc. The absolute bioavailability in male and female rats were 45.83% and 50.92% respectively. The parent drug and its metabolites were extensively distributed in the stomach, intestine, liver and lung, and were eliminated completely in 48 h. The majority of radioactivity was excreted through the feces at 92.34% of the dose with a small fraction through urine at 3.99% of the dose. The parent drug was the most significant circulating component, representing 49.23% and 70.65% over the 0-48 h collection time interval in the plasma of male and female. Two major metabolites, M553 (sulfate conjugate) and M457 (N-dealkyl product), were identified in plasma. Metabolites of CHMFL-FLT3-122, including ten phase I and four phase Ⅱ metabolites, were identified. The metabolic pathways of CHMFL-FLT3-122 were proposed as N-dealkylation, oxidation, amide hydrolysis, sulfate conjugation, and glucuronic conjugation.
Key words:    CHMFL-FLT3-122    acute myelocytic leukemia    in vivo metabolism    ADME    radiolabelling   
收稿日期: 2018-12-12
DOI: 10.16438/j.0513-4870.2018-1109
通讯作者: 杨劲, 孙宏张
Email: yjcpu@yahoo.com;hotsunhz@126.com
相关功能
PDF(519KB) Free
打印本文
0
作者相关文章
李冬阳  在本刊中的所有文章
汪潇  在本刊中的所有文章
鲁晓蓉  在本刊中的所有文章
杨劲  在本刊中的所有文章
孙宏张  在本刊中的所有文章

参考文献:
[1] Li X, Wang A, Yu K, et al. Discovery of (R)-1-(3-(4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)-2-(dimethylamino)ethanone (CHMFL-FLT3-122) as a potent and orally available FLT3 kinase inhibitor for FLT3-ITD positive acute myeloid leukemia[J]. J Med Chem, 2015, 58:9625-9638.
[2] Griffith J, Black J, Faerman C, et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain[J]. Mol Cell, 2004, 13:169-178.
[3] Wilhelm SM, Carter C, Tang LY, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis[J]. Cancer Res, 2004, 64:7099-7109.
[4] O'Farrell AM, Abrams TJ, Yuen HA, et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo[J]. Blood, 2003, 101:3597-3605.
[5] US Food and Drug Administrtion. Midostaurin[EB/OL]. 2017[2018-12-10]. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm555756.htm.
[6] Hop CE, Wang Z, Chen Q, et al. Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening[J]. J Pharm Sci, 2010, 87:901-903.
[7] Wang HH, Li G, Peng XP, et al. Secondary metabolites from Colletotrichum fioriniae F18, an endophytic fungus isolated from the medicinal plant Mahonia fortunei[J]. Acta Pharm Sin (药学学报), 2018, 53:1862-1867.
[8] Qiao S, Xu HS, Shi XW, et al. Identification of major bioactive components and their metabolites in rat plasma after oral administration of Zhikebao tablet by UHPLC-QTOF-MS[J]. Acta Pharm Sin (药学学报), 2018, 53:1536-1544.
[9] Wang CX, Wang L, Qian DW, et al. Identification of metabolites of Reduning injection in rat plasma, bile, urine and feces after intravenous administration[J]. Acta Pharm Sin (药学学报), 2018, 53:1148-1155.
[10] Li J, Hua ZD, Wang YM. Analysis of metabolites and metabolic pathway of 5F-AMB in vitro using UPLC-HR-MS[J]. Acta Pharm Sin (药学学报), 2017, 52:1743-1747.
[11] Kaminsky LS, Zhang QY. The small intestine as a xenobiotic-metabolizing organ[J]. Drug Metab Dispos, 2003, 31:1520-1525.
[12] Lin JH. Is the role of the small intestine in first-pass metabolism overemphasized?[J]. Pharmacol Rev, 1999, 51:135-157.