药学学报, 2019, 54(4): 729-736
引用本文:
陈秀丽, 周韵, 梁欣, 梅林, 武小金. 载黑磷量子点脂质体用于宫颈癌光热治疗的体外研究[J]. 药学学报, 2019, 54(4): 729-736.
CHEN Xiu-li, ZHOU Yun, LIANG Xin, MEI Lin, WU Xiao-jin. In vitro study of black phosphorus quantum dot-loaded liposomes for photothermal therapy of cervical cancer[J]. Acta Pharmaceutica Sinica, 2019, 54(4): 729-736.

载黑磷量子点脂质体用于宫颈癌光热治疗的体外研究
陈秀丽1, 周韵2, 梁欣2, 梅林1,2, 武小金1
1. 清华大学生命科学学院, 北京 100084;
2. 中山大学药学院(深圳), 广东 广州 510275
摘要:
本研究制备载黑磷量子点(BPQDs)脂质体(liposome-BPQDs),探究其理化性质及用于宫颈癌光热治疗的效果。应用超声法制备BPQDs,薄膜分散法制备liposome-BPQDs,并对其形貌、粒径、电位和拉曼光谱等进行表征。采用CCK-8法检测该纳米粒对人宫颈癌细胞(HeLa)的毒性。使用激光共聚焦显微镜(CLSM)和荧光倒置显微镜分别观察HeLa细胞摄取和细胞凋亡情况。结果表明,扫描电镜下,liposome-BPQDs呈椭球状或球状;透射电镜观察显示liposome-BPQDs粒径约90~110 nm。粒径及电位测量结果表明liposome-BPQDs粒径为(104.2±0.35)nm,zeta电位(-11.3±3.01)mV。脂质体包封率为(84.40±2.13)%。在室外通风、温度范围25℃~34℃和相对湿度80%~82%自然条件下,liposome-BPQDs光热效应良好,降解较BPQDs缓慢。Liposome-BPQDs可被HeLa细胞所摄取;近红外激光照射后,载BPQDs量达20 μg·mL-1时,HeLa细胞死亡率大幅度上升。本研究表明,liposome-BPQDs稳定性较高,且具有良好的光热效应,有望应用于宫颈癌光热治疗。
关键词:    黑磷量子点      脂质体      理化性质      宫颈癌      光热治疗     
In vitro study of black phosphorus quantum dot-loaded liposomes for photothermal therapy of cervical cancer
CHEN Xiu-li1, ZHOU Yun2, LIANG Xin2, MEI Lin1,2, WU Xiao-jin1
1. School of Life Science, Tsinghua University, Beijing 100084, China;
2. School of Pharmaceutics Science(Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
Abstract:
In this study, black phosphorus quantum dots (BPQDs)-loaded liposomes (liposome-BPQDs) were prepared to explore physicochemical properties and photothermal effects on cervical cancer cells. BPQDs were fabricated by ultrasonic method. Liposome-BPQDs were prepared by thin film dispersion. Surface morphology, particle size, zeta potential and Raman spectra of liposome-BPQDs were characterized. The cytotoxicity of the liposome-BPQDs against human cervical cancer cells (HeLa) was examined by CCK-8 assay. Confocal laser scanning microscope (CLSM) and fluorescence microscopy were used to observe the uptake and apoptosis of HeLa cells. The results indicated that liposome-BPQDs were ellipsoidal or spherical under scanning electron microscope, TEM observation showed liposome-BPQDs were about 90-110 nm in diameter. The particle size measurements showed liposome-BPQDs were (104.2±0.35) nm in diameter, and zeta potential were examined to be (-11.3±3.01) mV. The encapsulation efficiency was (84.40±2.13)%.Under natural conditions with outdoor ventilation, temperature range of 25℃-34℃ and relative humidity of 80%-82%, the photothermal effects of liposome-BPQDs was better and the degradation denaturation of liposome-BPQDs were slower than those of BPQDs. The results also reflected that liposome-BPQDs could be uptaken by HeLa cells easily. After near-infrared laser irradiation, the mortality of HeLa cells rise significantly when the amount of BPQDs reach 20 μg·mL-1. In summary, liposome-BPQDs with high stability exhibited good photothermal effects, which can be expected to be applied to photothermal therapy of cervical carcinoma.
Key words:    black phosphorus quantum dot    liposome    physicochemical property    cervical carcinoma    photothermal therapy   
收稿日期: 2019-01-10
DOI: 10.16438/j.0513-4870.2019-0033
基金项目: 国家自然科学基金资助项目(81771966);广东杰出青年科学基金资助项目(2014A030306036).
通讯作者: 梅林, 武小金
Email: meilin7@mail.sysu.edu.cn;wuxiaojin361@163.com
相关功能
PDF(820KB) Free
打印本文
0
作者相关文章
陈秀丽  在本刊中的所有文章
周韵  在本刊中的所有文章
梁欣  在本刊中的所有文章
梅林  在本刊中的所有文章
武小金  在本刊中的所有文章

参考文献:
[1] Wang HH, Fu ZG, Wen N, et al. The applications and prospects of doxorubicin-photodynamic combination therapy in malignant tumors[J]. Chin J Geriat Dentist (中华老年口腔医学杂志), 2018, 16:51-54, 60.
[2] Bilici K, Muti A, Duman FD, et al. Investigation of the factors affecting the photothermal therapy potential of small iron oxide nanoparticles over the 730-840 nm spectral region[J]. Photochem Photobiol Sci, 2018, 17, 1787-1793.
[3] Li Y, Wang X, Gao L, et al. Aptamer-conjugated gold nanostars for targeted cancer photothermal therapy[J]. J Mater Sci, 2018, 53:14138-14148.
[4] Shao JD, Xie HH, Huang H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy[J]. Nat Commun, 2016, 7:12967.
[5] Ren X, Li Z, Huang Z, et al. Environmentally robust black phosphorus nanosheets in solution:application for self-powered photodetector[J]. Adv Funct Mater, 2017, 27:1606834.
[6] Li Y, Liu Z, Hou Y, et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy[J]. ACS Appl Mater Interfaces, 2017, 9:25098-25106.
[7] Tao W, Zhu X, Yu X, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics[J]. Adv Mater, 2017, 29:1603276.
[8] Ramadass SK, Anantharaman NV, Subramanian S, et al. Paclitaxel/epigallocatechin gallate coloaded liposome:a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells[J]. Colloids Surf B Biointerfaces, 2015, 125:65-72.
[9] Ruttala HB, Ko YT. Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy[J]. Pharm Res, 2015, 32:1002-1016.
[10] Tagami T, Kubota M, Ozeki T. Effective remote loading of doxorubicin into DPPC/poloxamer 188 hybrid liposome to retain thermosensitive property and the assessment of carrier-based acute cytotoxicity for pulmonary administration[J]. J Pharm Sci, 2015, 104:3824-3832.
[11] Das A, Adhikari C, Nayak D, et al. First evidence of the liposome-mediated deintercalation of anticancer drug doxorubicin from the drug-DNA complex:a spectroscopic approach[J]. Langmuir, 2016, 32:159-170.
[12] Wang L, Yang CQ, Wang J. Assemble of magnetic nanoparticles into the structure of cisplatin liposome[J]. Acta Pharm Sin (药学学报), 2011, 46:592-598.
[13] Catanzaro D, Nicolosi S, Cocetta V, et al. Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells[J]. Oncotarget, 2018. 9:16847-16860.
[14] Yu YL, Zheng ZY, Yi CC, et al. Preparation and in vitro evaluation of artemisinin loaded long-circulating liposomes[J]. Acta Pharm Sin (药学学报), 2018, 53:1002-1008.
[15] Baek JS, Cho CW. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells[J]. Oncotarget, 2017, 8:30369-30382.
[16] Battaglia L, Serpe L, Foglietta F, et al. Application of lipid nanoparticles to ocular drug delivery[J]. Expert Opin Drug Deliv, 2016, 13:1743-1757.
[17] Xia S, Tan C, Zhang Y, et al. Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation[J]. Colloids Surf B Biointerfaces, 2015, 128:172-180.
[18] Silva R, Ferreira H, Little C, et al. Effect of ultrasound parameters for unilamellar liposome preparation[J]. Ultrason Sonochem, 2010, 17:628-632.
[19] Zhang H. Thin-film hydration followed by extrusion method for liposome preparation[M]//D'Souza GGM. Liposomes:Methods and Protocols. New York:Humana Press, 2017, 1522:17-22.
[20] Lee JS, Hwang SY, Lee EK. Imaging-based analysis of liposome internalization to macrophage cells:effects of liposome size and surface modification with PEG moiety[J]. Colloids Surf B Biointerfaces, 2015, 136:786-790.
[21] Zhang XB, Hou XP. Comparative efficacy and distribution of evans blue liposome modified with DSPE-PEG, Tween 80, and Brij35[J]. J Chin Pharm Sci, 2003, 12:71-75.
[22] Wang H, Zhao P, Liang X, et al. Construction of a novel cationic polymeric liposomes formed from PEGylated octadecyl-quaternized lysine modified chitosan/cholesterol for enhancing storage stability and cellular uptake efficiency[J]. Bioethanol Bioeng, 2010, 106:952-962.
[23] Yang F, Qin A, Li J, et al. Targeting and long circulating drug delivery system base on mannose-conjugated PEG-modified nano-liposomes for tumor chemotherapy[J]. Acta Laser Biol Sin (激光生物学报), 2017, 26:334-341.
[24] Yang YF, Xie XY, Yang Y, et al. A review on the influences of size and surface charge of liposome on its targeted drug delivery in vivo[J]. Acta Pharm Sin (药学学报), 2013, 48:1644-1650.
[25] Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices[J]. J Control Release, 2001, 70:1-20.
相关文献:
1.余荧蓝, 郑智元, 伊宸辰, 周沐野, 涂家生, 孙春萌.青蒿素长循环脂质体的制备及体外性质评价[J]. 药学学报, 2018,53(6): 1002-1008