药学学报, 2019, 54(5): 778-787
杨雨薇, 尚爽, 胡卓伟, 花芳. 赖氨酸乙酰化的研究进展及应用[J]. 药学学报, 2019, 54(5): 778-787.
YANG Yu-wei, SHANG Shuang, HU Zhuo-wei, HUA Fang. Advances and applications of lysine acetylation[J]. Acta Pharmaceutica Sinica, 2019, 54(5): 778-787.

杨雨薇, 尚爽, 胡卓伟, 花芳
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 新药作用机制研究与药效评价北京市重点实验室(BZ0150), 北京 100050
关键词:    乙酰化作用      代谢      蛋白质修饰      转译     
Advances and applications of lysine acetylation
YANG Yu-wei, SHANG Shuang, HU Zhuo-wei, HUA Fang
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study(BZ0150), Institute of Meteria Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Protein acetylation is a process of adding an acetyl group to a protein lysine residue with the help of acetyltransferase, which is a pivotal protein post-translational modification linking acetyl-CoA metabolism and cell signal transduction. Recently, the development of mass spectrometry has deepened our understanding of lysine acetylation. Lysine acetylation is involved in many processes such as gene transcription, protein degradation, cellular metabolism, and stress response, which affects biological processes by regulating protein interactions, activity, stability and localization. Protein acetylation is widely happened and plays important regulatory roles in a diversity of human diseases such as metabolic diseases, tumors and cardiovascular diseases. Besides, deacetylase inhibitors have displayed a great potential in the treatment of various diseases especially tumors and metabolic associated diseases. In this review, we summarized the advances and application of acetylation, and discussed the remaining problems in this area.
Key words:    acetylation    metabolism    protein modification    translational   
收稿日期: 2019-01-05
DOI: 10.16438/j.0513-4870.2019-0014
基金项目: 国家自然科学基金面上项目(81472717,81673474);北京市自然科学基金面上项目(7162133);中国医学科学院医学与健康科技创新工程(2016-I2M-1-007).
通讯作者: 花芳,Tel:86-10-83165034,E-mail:huafang@imm.ac.cn
Email: huafang@imm.ac.cn
PDF(440KB) Free
杨雨薇  在本刊中的所有文章
尚爽  在本刊中的所有文章
胡卓伟  在本刊中的所有文章
花芳  在本刊中的所有文章

[1] Roth SY, Denu JM, Allis CD. Histone acetyltransferases[J]. Annu Rev Biochem, 2001, 70:81-120.
[2] Lee KK, Workman JL. Histone acetyltransferase complexes:one size doesn't fit all[J]. Nat Rev Mol Cell Biol, 2007, 8:284-295.
[3] Berndsen CE, Denu JM. Catalysis and substrate selection by histone/protein lysine acetyltransferases[J]. Curr Opin Struct Biol, 2008, 18:682-689.
[4] Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology:implica tions for disease and therapy[J]. Nat Rev Genet, 2009, 10:32-42.
[5] Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins[J]. Nature, 2009, 460:587-591.
[6] Choudhary C, Weinert BT, Nishida Y, et al. The growing land scape of lysine acetylation links metabolism and cell signalling[J]. Nat Rev Mol Cell Biol, 2014, 15:536-550.
[7] Allfrey VG, Faulkner R, Mirsky AE. Acetykation and methyla tion of histones and their possible role in the regulation of RNA synthesis[J]. Proc Natl Acad Sci U S A, 1964, 51:786-794.
[8] L'Hernault SW, Rosenbaum JL. Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilonamino group of a lysine[J]. Biochemistry, 1985, 24:473-478.
[9] Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain[J]. Cell, 1997, 90:595-606.
[10] Jensen ON. Interpreting the protein language using proteomics[J]. Nat Rev Mol Cell Biol, 2006, 7:391-403.
[11] Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics[J]. Nat Rev Mol Cell Biol, 2010, 11:427-439.
[12] Wellen KE, Thompson CB. A two-way street:reciprocal regula tion of metabolism and signalling[J]. Nat Rev Mol Cell Biol, 2012, 13:270-276.
[13] He W, Newman JC, Wang MZ, et al. Mitochondrial sirtuins:regulators of protein acylation and metabolism[J]. Trends Endocrinol Metab, 2012, 23:467-476.
[14] Gut P, Verdin E. The nexus of chromatin regulation and inter mediary metabolism[J]. Nature, 2013, 502:489-498.
[15] Li Y, Silva JC, Skinner ME, et al. Mass spectrometry-based detection of protein acetylation[J]. Methods Mol Biol, 2013, 1077:81-104.
[16] Fritz KS, Galligan JJ, Hirschey MD, et al. Mitochondrial acety lome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice[J]. J Proteome Res, 2012, 11:1633-1643.
[17] Weinert BT, Iesmantavicius V, Moustafa T, et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae[J]. Mol Syst Biol, 2014, 10:716.
[18] Albaugh BN, Arnold KM, Denu JM. KAT (ching) metabolism by the tail:insight into the links between lysine acetyltrans ferases and metabolism[J]. Chembiochem, 2011, 12:290-298.
[19] Sultani G, Samsudeen AF, Osborne B, et al. NAD+:a key metabolic regulator with great therapeutic potential[J]. Neuro endocrinol, 2017. DOI:10.1111/jne.12508.
[20] Zhao X, Allison D, Condon B, et al. The 2.5Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition[J]. Med Chem, 2013, 56:963-969.
[21] Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor[J]. Science, 2013, 339:211-214.
[22] Huang H, Liu N, Guo H, et al. L-Carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro[J]. PLoS One, 2012, 7:e49062.
[23] Hait NC, Allegood J, Maceyka M, et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate[J]. Science, 2009, 325:1254-1257.
[24] Millard CJ, Watson PJ, Celardo I, et al. Class I HDACs share a common mechanism of regulation by inositol phosphates[J]. Mol Cell, 2013, 51:57-67.
[25] Zhu X, Liu B, Carlsten JO, et al. Mediator influences telomeric silencing and cellular life span[J]. Mol Cell Biol, 2011, 31:2413-2421.
[26] Olsson M, Hultman K, Dunoyer-Geindre S, et al. Epigenetic regulation of tissue-type plasminogen activator in human brain tissue and brain-derived cells[J]. Gene Regul Syst Bio, 2016, 10:9-13.
[27] Lee JT, Gu W. SIRT1:regulator of p53 deacetylation[J]. Genes Cancer, 2013, 4:112-117.
[28] Li K, Zhang TT, Hua F, et al. Metformin reduces TRIB3 expres sion and restores autophagy flux:an alternative antitumor action[J]. Autophagy, 2018, 14:1278-1279.
[29] Sang Y, Ren J, Qin R, et al. Acetylation regulating protein stability and DNA-binding ability of HilD, thus modulating salmonella typhimurium virulence[J]. J Infect Dis, 2017, 216:1018-1026.
[30] Liang W, Deutscher MP. Transfer-messenger RNA-SmpB protein regulates ribonuclease R turnover by promoting binding of HslUV and Lon proteases[J]. J Biol Chem, 2012, 287:33472-33479.
[31] Liang W, Malhotra A, Deutscher MP. Acetylation regulates the stability of a bacterial protein:growth stage-dependent modifica tion of RNase R[J]. Mol Cell, 2011, 44:160-166.
[32] Klein HU, McCabe C, Gjoneska E, et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer's human brains[J]. Nat Neurosci, 2019, 22:37-46.
[33] Min SW, Cho SH, Zhou Y, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy[J]. Neuron, 2010, 67:953-966.
[34] Lin HP, Cheng ZL, He RY, et al. Destabilization of fatty acid synthase by acetylation inhibits de novo lipogenesis and tumor cell growth[J]. Cancer Res, 2016, 76:6924-6936.
[35] Zhao S, Zhang X, Li H. Beyond histone acetylation-writing and erasing histone acylations[J]. Curr Opin Struct Biol, 2018, 53:169-177.
[36] Ling H, Peng L, Wang J, et al. Histone deacetylase SIRT1 targets Plk2 to regulate centriole duplication[J]. Cell Rep, 2018, 25:2851-2865.
[37] Ohtake F, Saeki Y, Sakamoto K, et al. Ubiquitin acetylation inhibits polyubiquitin chain elongation[J]. EMBO Rep, 2015, 16:192-201.
[38] Peng L, Yuan Z, Li Y, et al. Ubiquitinated sirtuin 1(SIRT1) func tion is modulated during DNA damage-induced cell death and survival[J]. J Biol Chem, 2015, 290:8904-8912.
[39] Habibian J, Ferguson BS. The crosstalk between acetylation and phosphorylation:emerging new roles for HDAC inhibitors in the heart[J]. Int J Mol Sci, 2018, 20:102.
[40] Moloney JN, Cotter TG. ROS signalling in the biology of cancer[J]. Semin Cell Dev Biol, 2018, 80:50-64.
[41] Zandalinas SI, Mittler R. ROS-induced ROS release in plant and animal cells[J]. Free Radic Biol Med, 2018, 122:21-27.
[42] Lima BP, Antelmann H, Gronau K, et al. Involvement of protein acetylation in glucose-induced transcription of a stress-respon sive promoter[J]. Mol Microbiol, 2011, 81:1190-1204.
[43] Ma Q, Wood TK. Protein acetylation in prokaryotes increases stress resistance[J]. Biochem Biophys Res Commun, 2011, 410:846-851.
[44] Qiu X, Brown K, Hirschey MD, et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation[J]. Cell Metab, 2010, 12:662-667.
[45] Chen Y, Zhang J, Lin Y, et al. Tumour suppressor SIRT3 deacety lates and activates manganese superoxide dismutase to scavenge ROS[J]. EMBO Rep, 2011, 12:534-541.
[46] Yu W, Dittenhafer-Reed KE, Denu JM. SIRT3 protein deacety lates isocitrate dehydrogenase 2(IDH2) and regulates mitochon drial redox status[J]. J Biol Chem, 2012, 287:14078-14086.
[47] Wang YP, Zhou LS, Zhao YZ, et al. Regulation of G6PD acetyla tion by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress[J]. EMBO J, 2014, 33:1304-1320.
[48] Saito M, Hess D, Eglinger J, et al. Acetylation of intrinsically disordered regions regulates phase separation[J]. Nat Chem Biol, 2019, 15:51-61.
[49] Ferreon JC, Jain A, Choi KJ, et al. Acetylation disfavors tau phase separation[J]. Int J Mol Sci, 2018, 4:19.
[50] Kosanam H, Thai K, Zhang Y, et al. Diabetes induces lysine acetylation of intermediary metabolism enzymes in the kidney[J]. Diabetes, 2014, 63:2432-2439.
[51] Kumar S, Kim YR, Vikram A, et al. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxida tive stress and endothelial dysfunction[J]. Proc Natl Acad Sci U S A, 2017, 114:1714-1719.
[52] Zhang Y, Xu YY, Yao CB, et al. Acetylation targets HSD17B4 for degradation via the CMA pathway in response to estrone[J]. Autophagy, 2017, 13:538-553.
[53] Yang J, Jin X, Yan Y, et al. Inhibiting histone deacetylases suppresses glucose metabolism and hepatocellular carcinoma growth by restoring FBP1 expression[J]. Sci Rep, 2017, 7:43864.
[54] Liao ZW, Zhao L, Cai MY, et al. P300 promotes migration, inva sion and epithelial-mesenchymal transition in a nasopharyngeal carcinoma cell line[J]. Oncol Lett, 2017, 13:763-769.
[55] Thapa D, Zhang M, Manning JR, et al. Acetylation of mito chondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart[J]. Am J Physiol Heart Circ Physiol, 2017, 313:H265-H274.
[56] Chen Z, Peng IC, Cui X, et al. Shear stress, SIRT1, and vascular homeostasis[J]. Proc Natl Acad Sci U S A, 2010, 107:10268-10273.
[57] Xiong S, Salazar G, San Martin A, et al. PGC-1 alpha serine 570 phosphorylation and GCN5-mediated acetylation by angiotensin Ⅱ drive catalase down-regulation and vascular hypertrophy[J]. J Biol Chem, 2010, 285:2474-2487.
[58] Pasqualucci L, Dominguez-Sola D, Chiarenza A, et al. Inacti vating mutations of acetyltransferase genes in B-cell lymphoma[J]. Nature, 2011, 471:189-195.
[59] Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia[J]. Nature, 2011, 471:235-239.
[60] Matzuk MM, McKeown MR, Filippakopoulos P, et al. Smallmolecule inhibition of BRDT for male contraception[J]. Cell, 2012, 150:673-684.
[61] McGraw AL. Romidepsin for the treatment of T-cell lymphomas[J]. Am J Health Syst Pharm, 2013, 70:1115-1122.
[62] Frye R, Myers M, Axelrod KC, et al. Romidepsin:a new drug for the treatment of cutaneous T-cell lymphoma[J]. Clin J Oncol Nurs, 2012, 16:195-204.
[63] Frumm SM, Fan ZP, Ross KN, et al. Selective HDAC1/HDAC2 inhibitors induce neuroblastoma differentiation[J]. Chem Biol, 2013, 20:713-725.
[64] Schroeder FA, Lewis MC, Fass DM, et al. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests[J]. PLoS One, 2013, 8:e71323.
[65] Newbold A, Matthews GM, Bots M, et al. Molecular and biologic analysis of histone deacetylase inhibitors with diverse specifici ties[J]. Mol Cancer Ther, 2013, 12:2709-2721.
[66] Knipstein J, Gore L. Entinostat for treatment of solid tumors and hematologic malignancies[J]. Expert Opin Investig Drugs, 2011, 20:1455-1467.
[67] Moffat D, Patel S, Day F, et al. Discovery of 2-(6-{[(6-fluoro quinolin-2-yl)methyl]amino}bicyclo[3.1.0] hex-3-yl)-N-hydroxy pyrimidine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor[J]. J Med Chem, 2010, 53:8663-8678.
[68] Banerji U, van Doorn L, Papadatos-Pastos D, et al. A phase I pharmacokinetic and pharmacodynamic study of CHR-3996, an oral class I selective histone deacetylase inhibitor in refractory solid tumors[J]. Clin Cancer Res, 2012, 18:2687-2694.
[69] Olsen CA, Montero A, Leman LJ, et al. Macrocyclic peptoidpeptide hybridsas inhibitors of class I histone deacetylases[J]. ACS Med Chem Lett, 2012, 3:749-753.
[70] Ahn MY, Ahn JW, Kim HS, et al. Apicidin inhibits cell growth by down regulating IGF-1R in salivary mucoepidermoid carcinoma cells[J]. Oncol Rep, 2015, 33:1899-1907.
[71] Wells CE, Bhaskara S, Stengel KR, et al. Inhibition of histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma[J]. PLoS One, 2013, 8:e68915.
[72] Minami J, Suzuki R, Mazitschek R, et al. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma[J]. Leukemia, 2014, 28:680-689.
[73] Suzuki T, Kasuya Y, Itoh Y, et al. Identification of highly selective and potent histone deacetylase 3 inhibitors using click chemistry-based combinatorial fragment assembly[J]. PLoS One, 2013, 8:e68669.
[74] Rettig I, Koeneke E, Trippel F, et al. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation[J]. Cell Death Dis, 2015, 6:e1657.
[75] Suzuki T, Ota Y, Ri M, et al. Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries[J]. J Med Chem, 2012, 55:9562-9575.
[76] Suzuki T, Muto N, Bando M, et al. Design, synthesis, and biological activity of NCC149 derivatives as histone deacetylase 8-selective inhibitors[J]. Chem Med Chem, 2014, 9:657-664.
[77] Huang WJ, Wang YC, Chao SW, et al. Synthesis and biological evaluation of ortho-aryl N-hydroxycinnamides as potent histone deacetylase (HDAC) 8 isoform-selective inhibitors[J]. Chem Med Chem, 2012, 7:1815-1824.
[78] Lobera M, Madauss KP, Pohlhaus DT, et al. Selective class Ⅱa histone deacetylase inhibition via a non chelating zinc-binding group[J]. Nat Chem Biol, 2013, 9:319-325.
[79] Kikuchi S, Suzuki R, Ohguchi H, et al. Class Ⅱa HDAC inhibi tion enhances ER stress-mediated cell death in multiple myeloma[J]. Leukemia, 2015, 29:1918-1927.
[80] Wang G, He J, Zhao J, et al. Class I and class Ⅱ histone deacety lases are potential therapeutic targets for treating pancreatic cancer[J]. PLoS One, 2012, 7:e52095.
[81] Colarossi L, Memeo L, Colarossi C, et al. Inhibition of histone deacetylase 4 increases cytotoxicity of docetaxel in gastric cancer cells[J]. Proteomics Clin Appl, 2014, 8:924-931.
[82] Ishikawa S, Hayashi H, Kinoshita K, et al. Statins inhibit tumor progression via an enhancer of zeste homolog 2-mediated epigenetic alteration in colorectal cancer[J]. Int J Cancer, 2014, 135:2528-2536.
[83] Marek L, Hamacher A, Hansen FK, et al. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells[J]. J Med Chem, 2013, 56:427-436.
[84] Santo L, Hideshima T, Kung AL, et al. Preclinical activity, pharmaco dynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma[J]. Blood, 2012, 119:2579-2589.
[85] Amengual JE, Johannet P, Lombardo M, et al. Dual targeting of protein degradation pathways with the selective HDAC6 inhibitor ACY-1215 and bortezomib is synergistic in lymphoma[J]. Clin Cancer Res, 2015, 21:4663-4675.
[86] Li S, Liu X, Chen X, et al. Histone deacetylase 6 promotes growth of glioblastoma through inhibition of SMAD2 signaling[J]. Tumour Biol, 2015, 36:9661-9665.
[87] Mishima Y, Santo L, Eda H, et al. Ricolinostat (ACY-1215) induced inhibition of aggresome formation accelerates carfilzomibinduced multiple myeloma cell death[J]. Br J Haematol, 2015, 169:423-434.
[88] Aldana-Masangkay GI, Rodriguez-Gonzalez A, Lin T, et al. Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells[J]. Leuk Lymphoma, 2011, 52:1544-1555.
[89] Butler KV, Kalin J, Brochier C, et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A[J]. J Am Chem Soc, 2010, 132:10842-10846.
[90] Kaliszczak M, Trousil S, Åberg O, et al. A novel small molecule hydroxamate preferentially inhibits HDAC6 activity and tumour growth[J]. Br J Cancer, 2013, 108:342-350.
[91] Lee JH, Mahendran A, Yao Y, et al. Development of a histone deacetylase 6 inhibitor and its biological effects[J]. Proc Natl Acad Sci U S A, 2013, 110:15704-15709.
[92] Bergman JA, Woan K, Perez-Villarroel P, et al. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth[J]. J Med Chem, 2012, 55:9891-9899.
[93] Lee HY, Tsai AC, Chen MC, et al. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells[J]. J Med Chem, 2014, 57:4009-4022.
[94] Bantscheff M, Hopf C, Savitski MM, et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes[J]. Nat Biotechnol, 2011, 29:255-265.
[95] Oehme I, Linke JP, Böck BC, et al. Histone deacetylase 10 promotes autophagy-mediated cell survival[J]. Proc Natl Acad Sci U S A, 2013, 110:E2592-E2601.
[96] Li Y, Peng L, Seto E. Histone deacetylase 10 regulates the cell cycle G2/M phase transition via a novel Let-7-HMGA2-cyclin A2 pathway[J]. Mol Cell Biol, 2015, 35:3547-3565.
[97] Schölz C, Weinert BT, Wagner SA, et al. Acetylation site speci-ficities of lysine deacetylase inhibitors inhuman cells[J]. Nat Biotechnol, 2015, 33:415-423.
[98] Fujisawa T, Filippakopoulos P. Functions of bromodomaincontaining proteins and their roles in homeostasis and cancer[J]. Nat Rev Mol Cell Biol, 2017, 18:246-262.
[99] Murray LA, Sheng X, Cristea IM. Orchestration of protein acety-lation as a toggle for cellular defense and virus replication[J]. Nat Commun, 2018, 9:4967.
[100] Basilicata MF, Bruel AL, Semplicio G, et al. De novo mutations in MSL3 cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation[J]. Nat Genet, 2018, 50:1442-1451.