药学学报, 2019, 54(5): 818-827
引用本文:
朱黎, 邹旋, 刘堂荣, 刘若男, 许哲. 质谱技术在酶抑制剂筛选中的研究进展[J]. 药学学报, 2019, 54(5): 818-827.
ZHU Li, ZOU Xuan, LIU Tang-rong, LIU Ruo-nan, XU Zhe. Recent advances in enzyme inhibitor screening based on mass spectrometry[J]. Acta Pharmaceutica Sinica, 2019, 54(5): 818-827.

质谱技术在酶抑制剂筛选中的研究进展
朱黎1,2, 邹旋1,2, 刘堂荣1,2, 刘若男1,2, 许哲1,2,3
1. 中国海洋大学医药学院, 海洋药物教育部重点实验室, 山东省糖科学与糖工程重点实验室, 山东 青岛 266003;
2. 青岛海洋科学与技术试点国家实验室, 海洋药物与生物制品功能实验室, 海洋创新药物筛选与评价平台, 山东 青岛 266237;
3. 青岛海洋生物医药研究院, 山东 青岛 266071
摘要:
酶是调控人体机能使机体进行正常生命活动的物质,酶抑制剂能特异性调节酶的活性并可能成为药物发现的起点。目前,质谱具有对酶反应进行快速定量分析的优势,使其在酶抑制剂筛选发现新药领域发展迅猛。本文综述了近几年国内外应用质谱以及质谱联用技术(前沿亲和色谱、固定化酶磁珠、超滤、表面等离子体共振、毛细管电泳和微流控芯片)筛选酶抑制剂的方法。按照两种不同筛选原理进行阐述:活性筛选和亲和筛选。
关键词:    质谱      药物发现      抑制剂筛选      酶活性测定     
Recent advances in enzyme inhibitor screening based on mass spectrometry
ZHU Li1,2, ZOU Xuan1,2, LIU Tang-rong1,2, LIU Ruo-nan1,2, XU Zhe1,2,3
1. Key Laboratory of Marine Drugs, Chinese Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
2. Laboratory for Marine Drugs and Bioproducts, Innovation Center for Marine Drugs Screening and Evaluation, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;
3. Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
Abstract:
Enzymes play crucial functional roles in all biological processes. Enzymatic inhibitors can regulate enzyme activity and may become the starting point for drug discovery. Mass spectrometry (MS) has the advantage for rapid qualitative and quantitative analyses of compounds and enzyme reactions, emerging as an important analytical tool in enzyme inhibitor screening assay for drug discovery. This review will highlight recent advances in the inhibitor screening assay using MS and related techniques, including frontier affinity chromatography, immobilized enzyme beads, ultrafiltration, surface plasmon resonance, capillary electrophoresis and microfluidic chips. The existing MS methods for screening enzyme inhibitor were divided into two types:affinity screening and activity screening.
Key words:    mass spectrometry    drug discovery    inhibitor screening    enzyme assay   
收稿日期: 2018-12-21
DOI: 10.16438/j.0513-4870.2018-1132
基金项目: 国家自然科学基金资助项目(21505124);中央高校基本科研业务费专项资金;中国博士后科学基金资助项目(2015M582144);青岛市博士后应用研究项目资助.
通讯作者: 许哲,Tel:15166038767,E-mail:xuzhe@ouc.edu.cn
Email: xuzhe@ouc.edu.cn
相关功能
PDF(474KB) Free
打印本文
0
作者相关文章
朱黎  在本刊中的所有文章
邹旋  在本刊中的所有文章
刘堂荣  在本刊中的所有文章
刘若男  在本刊中的所有文章
许哲  在本刊中的所有文章

参考文献:
[1] Shanmuganathan M, Britz-McKibbin P. High quality drug screening by capillary electrophoresis:a review[J]. Anal Chim Acta, 2013, 773:24-36.
[2] Rolland T, An MT, Charloteaux B, et al. A proteome-scale map of the human interactome network[J]. Cell, 2014, 159:1212-1226.
[3] Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets[J]. Nat Rev Drug Discov, 2016, 16:19-34.
[4] Bleicher KH, Böhm H, Müller K, et al. A guide to drug discovery:Hit and lead generation:beyond high-throughput screening[J]. Nat Rev Drug Discov, 2003, 2:369-378.
[5] Drews J. Drug discovery:a historical perspective[J]. Science, 2000, 287:1960-1964.
[6] Wingfield J, Wilson ID. Advances in mass spectrometry within drug discovery[J]. J Biomol Screen, 2016, 21:109-110.
[7] Sun LN, Wu CY, Zhao SB, et al. Establishment of in vitro methods for evaluation of induction and inhibition of human CYP450 enzymes by drugs[J]. Acta Pharm Sin (药学学报), 2017, 12:1924-1932.
[8] He SF, Ju WZ, Hu HB, et al. Change of hepatic drug metabolism enzymes in rat depression model with kidney-yang deficiency[J]. Acta Pharm Sin (药学学报), 2017, 52:258-263.
[9] Zhou YM, Cui HQ, Yu XM, et al. Synthesis of benzimidazole and benzothiazole derivatives as a sirtuins 2 inhibitor[J]. Acta Pharm Sin (药学学报), 2017, 52:773-778.
[10] Li H, Han X, Li DW. Synthesis and anti-tumor activity of levofloxacin-thiadiazole histone deacetylase inhibitor conjugates[J]. Acta Pharm Sin (药学学报), 2017, 52:582-591.
[11] Copeland RA. Evaluation of Enzyme Inhibitors in Drug Dis covery:a Guide for Medicinal Chemists and Pharmacologists[M]. 2nd Ed. Wiley-Interscience, 2013.
[12] Vu H, Pham NB, Quinn RJ. Direct screening of natural product extracts using mass spectrometry[J]. J Biomol Screen, 2008, 13:265-275.
[13] Poulsen S, Davis RA, Keys TG. Screening a natural productbased combinatorial library using FTICR mass spectrometry[J]. Bioorg Med Chem, 2006, 14:510-515.
[14] Yang B, Feng YJ, Vu H, et al. Bioaffinity mass spectrometry screening[J]. J Biomol Screen, 2015, 21:194-200.
[15] Gong X. The Effect of Ligand on Protein Conformation:Insight From Ion Mobility Mass Spectrum (利用离子淌度质谱解析配体对蛋白质结构的影响)[D]. Nanjing:Nanjing University of Science & Technology, 2016.
[16] Zhu J, Yi X, Liu W, et al. Immobilized fusion protein affinity chromatography combined with HPLC-ESI-Q-TOF-MS/MS for rapid screening of PPARγ ligands from natural products[J]. Talanta, 2017, 165:508-515.
[17] Lan X. Study on Separation of Antihypertensive Peptides from Sauridaelongate by Magnetic Agrose Microspheres Immobilized Angiotensin Converting Enzyme (ACE) from Pig Lung (磁性琼脂糖微球固定化猪肺血管紧张素转化酶分离长蛇鲻降血压肽的研究)[D]. Nanning:Guangxi University, 2015.
[18] Xu H, Liu M, Huang X, et al. A multiplexed quantitative MALDI MS approach for assessing activity and inhibition of protein kinases based on post-enrichment dephosphorylation of phosphopeptides by MOF-templated porous CeO2[J]. Anal Chem, 2018, 90:9859-9867.
[19] Hu F, Zhang H, Lin H, et al. Enzyme inhibitor screening by elec trospray mass spectrometry with immobilized enzyme on mag netic silica microspheres[J]. J Am Soc Mass Spectrom, 2008, 19:865-873.
[20] Schriemer DC, Bundle DR, Li L, et al. Micro-scale frontal affinity chromatography with mass spectrometric detection:a new method for the screening of compound libraries[J]. Angewandte Chem Inter Edit, 1998, 37:3383-3387.
[21] Schriemer DC, Bundle DR, Li L, et al. Microscale frontal affinity chromatography with mass spectrometric detection:a new method for the screening of compound libraries[J]. Angew Chem Int Ed, 1998, 37:3383-3387.
[22] de Moraes MC, Temporini C, Calleri E, et al. Evaluation of capillary chromatographic supports for immobilized human purine nucleoside phosphorylase in frontal affinity chromatography studies[J]. J Chromatogr A, 2014, 1338:77-84.
[23] Yuan X, Hu D, Zhu W, et al. Application of frontal affinity chromatography combined on-line with mass spectrometry to screening PAI-1 inhibitors from traditional Chinese medicine[J]. Anal Methods, 2012, 4:3744.
[24] Calleri E, Temporini C, Caccialanza G, et al. Target-based drug discovery:the emerging success of frontal affinity chromatog raphy coupled to mass spectrometry[J]. Chem Med Chem, 2009, 4:905-916.
[25] Ng ESM, Yang F, Kameyama A, et al. High-throughput screening for enzyme inhibitors using frontal affinity chromatography with liquid chromatography and mass spectrometry[J]. Anal Chem, 2005, 77:6125-6133.
[26] Ng ESM, Chan NW, Lewis DF, et al. Frontal affinity chromatog raphy-mass spectrometry[J]. Nat Protoc, 2007, 2:1907-1917.
[27] Wang T, Li D, Yu B, et al. Screening inhibitors of xanthine oxidase from natural products using enzyme immobilized magnetic beads by high-performance liquid chromatography coupled with tandem mass spectrometry[J]. J Sep Sci, 2017, 40:1877-1886.
[28] Cao J, Xu J, Liu X, et al. Screening of thrombin inhibitors from phenolic acids using enzyme-immobilized magnetic beads through direct covalent binding by ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry[J]. J Chromatogr A, 2016, 1468:86-94.
[29] Tao Y, Zhang Y, Cheng Y, et al. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR[J]. Biomed Chromatogr, 2013, 27:148-155.
[30] Li Y, Xu J, Chen Y, et al. Screening of inhibitors of glycogen synthase kinase-3β from traditional Chinese medicines using enzyme-immobilized magnetic beads combined with high-perfor mance liquid chromatography[J]. J Chromatogr A, 2015, 1425:8-16.
[31] Joshi S, Zuilhof H, van Beek TA, et al. Biochip spray:simplified coupling of surface plasmon resonance biosensing and mass spectrometry[J]. Anal Chem, 2017, 89:1427-1432.
[32] Zhang Y, Li X, Nie H, et al. Interface for online coupling of surface plasmon resonance to direct analysis in real time mass spectrometry[J]. Anal Chem, 2015, 87:6505-6509.
[33] Nedelkov D, Nelson RW. Surface plasmon resonance mass spec trometry:recent progress and outlooks[J]. Trends Biotechnol, 2003, 21:301-305.
[34] Borch J, Roepstorff P. Screening for enzyme inhibitors by surface plasmon resonance combined with mass spectrometry[J]. Anal Chem, 2004, 76:5243-5248.
[35] Kim YE,Yi SY, Lee C, et al. Gold patterned biochips for on-chip immuno-MALDI-TOF MS:SPR imaging coupled multi-protein MS analysis[J]. Analyst, 2012, 137:386-392.
[36] Zhao H, Zhou S, Zhang M, et al. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of coptis chinensis franch[J]. J Pharm Biomed, 2016, 120:235-240.
[37] Tao Y, Chen Z, Zhang YF. Characterization of α-amylase binding agents from hawthorn leaf using ultrafiltration and liquid chro matography tandem mass spectrometry[J]. Chin J Anal Chem (分析化学), 2013, 441:229-234.
[38] Choi Y, Jermihov K, Nam S, et al. Screening natural products for inhibitors of quinone reductase-2 using ultrafiltration LC-MS[J]. Anal Chem, 2011, 83:1048-1052.
[39] Li B, Zong X, Zhang H, et al. Screening and structural charac terization of MMP-2 inhibitor from Carthamus tinctorius L. using ultrafiltration liquid chromatography-mass spectrometry[J]. J Liq Chromatogr Relat Technol, 2014, 37:2327-2336.
[40] Chen G, Tian Y, Guo M. Screening for inhibitors of topoi somerase I from Lycoris radiata by combining ultrafiltration with liquid chromatography/mass spectrometry[J]. Rapid Commun Mass Spectrom, 2016, 30:95-99.
[41] Yang JR, Luo JG, Kong LY. Determination of α -glucosidase inhibitors from Scutellaria baicalensis using liquid chroma tography with quadrupole time of flight tandem mass spectrometry coupled with centrifugal ultrafiltration[J]. Chin J Nat Med, 2015, 13:208-214.
[42] Wu S, Yang H, Li P. Application of the affinity ultrafiltration coupled with LC-MS technology in screening active components of traditional Chinese medicines[J]. Acta Pharm Sin (药学学报), 2016, 51:1060-1067.
[43] Takats Z, Wiseman JM, Gologan B, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization[J]. Science, 2004, 306:471-473.
[44] Yao C, Na N, Huang L, et al. High-throughput detection of drugs binding to proteins using desorption electrospray ionization mass spectrometry[J]. Anal Chim Acta, 2013, 794:60-66.
[45] Fryčák P, Hartmanová L, Lorencová I, et al. Screening of synthetic phosphodiesterase-5 inhibitors in herbal dietary supple ments using transmission-mode desorption electrospray and high -resolution mass spectrometry[J]. J Mass Spectrom, 2016, 51:358-362.
[46] Wang L, Liu S, Xing J, et al. Characterization of interaction property of multi-components in Gardenia jasminoides with aldose reductase by microdialysis combined with liquid chroma tography coupled to mass spectrometry[J]. Rapid Commun Mass Spectrom, 2016, 30:87-94.
[47] Hopcroft PJ, Fisher DI. Development of a medium-throughput targeted LC MS assay to detect endogenous cellular levels of malonyl-CoA to screen fatty acid synthase inhibitors[J]. J Biomol Screen, 2015, 21:111-116.
[48] Yang H, Chan AL, LaVallo V, et al. Quantitation of alphaglucosidase activity using fluorinated carbohydrate array and MALDI-TOF-MS[J]. Acs Appl Mater Inter, 2016, 8:2872-2878.
[49] Liu S, Xing J, Zheng Z, et al. Ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry inhibitors fishing assay:a novel method for simultaneously screening of xanthine oxidase inhibitor and superoxide anion scavenger in a single analysis[J]. Anal Chim Acta, 2012, 715:64-70.
[50] Song XS, Zhang J, Chen X, et al. Identification of DGAT2 inhibitors using mass spectrometry[J]. J Biomol Screen, 2015, 21:117-126.
[51] Haslam C, Hellicar J, Dunn A, et al. The Evolution of MALDITOF mass spectrometry toward ultra-high-throughput screening:1536-Well Format and Beyond[J]. J Biomol Screen, 2015, 21:176-186.
[52] Cattaneo G, Ubiali D, Calleri E, et al. Development, validation and application of a 96-well enzymatic assay based on LC-ESIMS/MS quantification for the screening of selective inhibitors against mycobacterium tuberculosis purine nucleoside phos phorylase[J]. Anal Chim Acta, 2016, 943:89-97.
[53] Leveridge M, Collier L, Edge C, et al. A high-throughput screen to identify LRRK2 kinase inhibitors for the treatment of Par kinson's disease using rapid fire mass spectrometry[J]. J Biomol Screen, 2015, 21:145-155.
[54] Sun S, Kennedy RT. Droplet electrospray ionization mass spec trometry for high throughput screening for enzyme inhibitors[J]. Anal Chem, 2014, 86:9309-9314.
[55] Douxfils J, Pochet L, Lessire S, et al. Mass spectrometry in the therapeutic drug monitoring of direct oral anticoagulants. Useful or useless?[J]. Trends Anal Chem, 2016, 84:41-50.
[56] Rohde G. Determination of rivaroxaban-a novel, oral, direct factor Xa inhibitor-in human plasma by high-performance liquid chromatography-tandem mass spectrometry[J]. J Chromatogr B, 2008, 872:43-50.
[57] Tao M, Zhang L, Guo Y. Dual-channel enzymatic inhibition measurement (DEIM) coupling isotope substrate via matrixassisted laser desorption/ionization time of flight mass spec trometry[J]. J Am Soc Mass Spectr, 2018, 29:2427-2435.
[58] Ryu HW, Oh S, Curtis-Long MJ, et al. Rapid identification of cholinesterase inhibitors from the seedcases of mangosteen using an enzyme affinity assay[J]. J Agric Food Chem, 2014, 62:1338-1343.
[59] Cai T, Zhang L, Wang H, et al. Assisted inhibition effect of acetylcholinesterase with n-octylphosphonic acid and application in high sensitive detection of organophosphorous pesticides by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry[J]. Anal Chim Acta, 2011, 706:291-296.
[60] Musharraf SG, Bhatti MS, Choudhary MI, et al. Screening of inhibitors of angiotensin-converting enzyme (ACE) employing high performance liquid chromatography-electrospray ionization triple quadrupole mass spectrometry (HPLC-ESI-QqQ-MS)[J]. Eur J Pharm Sci, 2017, 101:182-188.
[61] Zhu L, Liu R, Liu T, et al. A novel strategy to screen inhibitors of multiple aminoglycoside-modifying enzymes with ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry[J]. J Pharm Biomed, 2019, 164:520-527.
[62] Maher HM, Alzoman NZ, Shehata SM. Simultaneous determina tion of selected tyrosine kinase inhibitors with corticosteroids and antiemetics in rat plasma by solid phase extraction and ultra-performance liquid chromatography-tandem mass spec trometry:application to pharmacokinetic interaction studies[J]. J Pharm Biomed, 2016, 124:216-227.
[63] Lu H, Kopcho L, Ghosh K, et al. Development of a rapid fire mass spectrometry assay and a fluorescence assay for the discovery of kynurenine aminotransferase Ⅱ inhibitors to treat central nervous system disorders[J]. Anal Biochem, 2016, 501:56-65.
[64] Xu Z, Liu R, Guan H. Dual-target inhibitor screening against thrombin and factor Xa simultaneously by mass spectrometry[J]. Anal Chim Acta, 2017, 990:1-10.
[65] de Boer AR, Letzel T, van Elswijk DA, et al. On-line coupling of high-performance liquid chromatography to a continuous-flow enzyme assay based on electrospray ionization mass spectrome try[J]. Anal Chem, 2004, 76:3155-3161.
[66] Schejbal J, Slezáčková L, Řemínek R, et al. A capillary electro phoresis-mass spectrometry based method for the screening of β-secretase inhibitors as potential Alzheimer's disease therapeutics[J]. J Chromatogr A, 2017, 1487:235-241.
[67] Zhou ZG, Li M, Bai Y, et al. Recent developments in capillary electrophoresis-mass spectrometry[J]. Chin J Chromatogr (色谱), 2009, 27:114.
[68] Wang X, Dou Z, Yuan Y, et al. On-line screening of matrix metalloproteinase inhibitors by capillary electrophoresis coupled to ESI mass spectrometry[J]. J Chromatogr B, 2013, 930:48-53.
[69] Vilela AFL, Cardoso CL. An on-flow assay for screening of β-secretase ligands by immobilised capillary reactor-mass spec trometry[J]. Anal Methods, 2017, 9:2189-2196.
[70] Vanzolini KL, Vieira LCC, Corrêa AG, et al. Acetylcholines terase immobilized capillary reactors-tandem mass spectrometry:an on-flow tool for ligand screening[J]. J Med Chem, 2013, 56:2038-2044.
[71] Jian WS, Han LP, Chen ZG. Advances in enzyme inhibitor screening based on microfluidic technology[J]. Chem Res Appl (化学研究与应用), 2014, 12:1825-1830.
[72] Meller K, Szumski M, Buszewski B. Microfluidic reactors with immobilized enzymes-characterization, dividing, perspectives[J]. Sens Actuators B Chem, 2017, 244:84-106.
[73] Feng X, Liu BF, Li J, et al. Advance in couping microfluidic chips to mass spectrometry[J]. Mass Spectrom Rev, 2015, 35:535-557.
[74] de Boer AR, Bruyneel B, Krabbe JG, et al. A microfluidic-based enzymatic assay for bioactivity screening combined with capillary liquid chromatography and mass spectrometry[J]. Lab Chip, 2005, 5:1286.
[75] Iyer JK, Otvos RA, Kool J, et al. Microfluidic chip-based online screening coupled to mass spectrometry:identification of inhibi tors of thrombin and factor Xa[J]. J Biomol Screen, 2015, 21:212-220.
[76] Ohla S, Belder D. Chip-based separation devices coupled to mass spectrometry[J]. Curr Opin Chem Biol, 2012, 16:453-459.