药学学报, 2019, 54(5): 828-837
引用本文:
李信, 马海燕, 李鲁盼, 孙珊珊, 朱丽君, 刘玉峰. 糖尿病的代谢组学研究进展[J]. 药学学报, 2019, 54(5): 828-837.
LI Xin, MA Hai-yan, LI Lu-pan, SUN Shan-shan, ZHU Li-jun, LIU Yu-feng. Progress in metabolomics research of diabetes[J]. Acta Pharmaceutica Sinica, 2019, 54(5): 828-837.

糖尿病的代谢组学研究进展
李信, 马海燕, 李鲁盼, 孙珊珊, 朱丽君, 刘玉峰
辽宁大学药学院, 辽宁 沈阳 110036
摘要:
糖尿病是一种发病率极高的代谢紊乱性疾病。随着糖尿病发病人数的逐年增加,其发病人群也呈现出年轻化趋势。因此,深入开展糖尿病研究工作迫在眉睫。近年来,代谢组学在糖尿病的生物标记物发现、发病机制探索、早期诊断及预后、药物疗效评价等方面的研究中取得了可喜的进展。但限于代谢组学技术的发展局限及糖尿病研究的复杂性,糖尿病的代谢组学研究仍然面临诸多的挑战。本文主要针对代谢组学在糖尿病中的研究进展及其发展方向进行合理的总结和展望。
关键词:    代谢组学      糖尿病      生物标记物      研究进展     
Progress in metabolomics research of diabetes
LI Xin, MA Hai-yan, LI Lu-pan, SUN Shan-shan, ZHU Li-jun, LIU Yu-feng
College of Pharmacy, Liaoning University, Shenyang 110036, China
Abstract:
Diabetes is a metabolic disease with an extremely high incidence in China. In parallel with an increased incidence yearly, the population of diabetes is showing a trend towards younger age. Therefore, it is urgent to carry out research on diabetes in order to develop strategy for prevention. In recent years, metabolomics has made significant progress in the study of biomarkers, pathogenesis, early diagnosis and prognosis, and evalua tion of drug efficacy in diabetes. However, limited by metabolomics technology and the complexity of diabetes research, metabolomics in the diabetes research remains challenging. We summarize the progress and prospect the future development of metabolomics in the diabetes research.
Key words:    metabolomics    diabetes    biomarker    research progress   
收稿日期: 2018-12-04
DOI: 10.16438/j.0513-4870.2018-1077
基金项目: 国家自然科学基金资助项目(81403177);辽宁省高等学校创新人才支持计划(LR2018047).
通讯作者: 刘玉峰,Tel:15998107929,E-mail:liuyufeng@bjmu.edu.cn
Email: liuyufeng@bjmu.edu.cn
相关功能
PDF(449KB) Free
打印本文
0
作者相关文章
李信  在本刊中的所有文章
马海燕  在本刊中的所有文章
李鲁盼  在本刊中的所有文章
孙珊珊  在本刊中的所有文章
朱丽君  在本刊中的所有文章
刘玉峰  在本刊中的所有文章

参考文献:
[1] Tabit CE, Chung WB, Hamburg NM, et al. Endothelial dysfunc tion in diabetes mellitus:molecular mechanisms and clinical implications[J]. Rev Endocr Metab Disord, 2010, 11:61-74.
[2] Prentki M, Nolan CJ. Islet β cell failure in type 2 diabetes[J]. J Clin Invest, 2006, 116:1802-1812.
[3] Savage DB, Petersen KF, Shulman GI. Disordered lipid metabo lism and the pathogenesis of insulin resistance[J]. Physiol Rev, 2007, 87:507-520.
[4] Nan HL, Zhang Y. Latest researches on type 2 diabetes mellitus and cardiovascular complications[J]. Med Recapitul (医学综述), 2010, 16:3142-3145.
[5] Yu C, Xiong QY, Wang LZ, et al. Recent progress in the patho genesis of diabetic nephropathy and its treatment[J]. Med Reca pitul (医学综述), 2015, 2015:3944-3947.
[6] Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’:under standing the metabolic responses of living systems to patho physiological stimuli via multivariate statistical analysis of bio logical NMR spectroscopic data[J]. Xenobiotica, 1999, 29:1181-1189.
[7] Fiehn O, Kopka J, Dörmann P, et al. Metabolite profiling for plant functional genomics[J]. Nat Biotechnol, 2000, 18:1157-1161.
[8] Wilkins JM, Trushina E. Application of metabolomics in Alzheimer's disease[J]. Front Neurol, 2018, 8:719.
[9] Wang JH, Wang C, Liu HH, et al. Metabolomics assisted metabolic network modeling and network wide analysis of metabolites in microbiology[J]. Crit Rev Biotechnol, 2018, 38:1106-1120.
[10] Yu QH, Zhang JK, Ye XQ, et al. Progress on metabolomics for authenticity identification of food[J]. Chin J Chromatogr (色谱), 2016, 34:657-664.
[11] Wang PC, Wang QH, Yang BY, et al. The progress of metabolo mics study in traditional Chinese medicine research[J]. Am J Chin Med, 2015, 43:1281-1310.
[12] Ramirez T, Daneshian M, Kamp H, et al. Metabolomics in toxicology and preclinical research[J]. ALTEX, 2013, 30:209.
[13] Sun LY, Yan XZ. Recent Development of metabonomics and its applications in diseases research[J]. Med Recapitul (医学综述), 2012, 18:961-963.
[14] Pearson E. Personalized medicine in diabetes:the role of ‘omics’ and biomarkers[J]. Diabet Med, 2016, 33:712-717.
[15] Beger RD, Dunn W, Schmidt MA, et al. Metabolomics enables precision medicine:"a white paper, community perspective"[J]. Metabolomics, 2016, 12:149.
[16] Gowda GN, Zhang S, Gu H, et al. Metabolomics-based methods for early disease diagnostics[J]. Expert Rev Mol Diagn, 2008, 8:617-633.
[17] Friedrich N. Metabolomics in diabetes research[J]. J Endo crinol, 2012, 215:29-42.
[18] Pallares-Méndez R, Aguilar-Salinas CA, Cruz-Bautista I, et al. Metabolomics in diabetes, a review[J]. Ann Med, 2016, 48:89-102.
[19] Zhang AH, Qiu S, Xu HY, et al. Metabolomics in diabetes[J]. Clin Chim Acta, 2014, 429:106-110.
[20] Jaiswal M, Divers J, Dabelea D, et al. Prevalence of and risk factors for diabetic peripheral neuropathy in youth with type 1 and type 2 diabetes:search for diabetes in youth study[J]. Diabetes Care, 2017, 40:1226-1232.
[21] Farsani SF, van Der Aa M, van Der Vorst M, et al. Global trends in the incidence and prevalence of type 2 diabetes in children and adolescents:a systematic review and evaluation of method ological approaches[J]. Diabetologia, 2013, 56:1471-1488.
[22] Ning G, Hong J, Bi YF, et al. Progress in diabetes research in China[J]. J Diabetes, 2009, 1:163-172.
[23] Cho N, Shaw J, Karuranga S, et al. IDF Diabetes Atlas:global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Res Clin Pract, 2018, 138:271-281.
[24] Emwas AHM, Salek RM, Griffin JL, et al. NMR-based metabo lomics in human disease diagnosis:applications, limitations, and recommendations[J]. Metabolomics, 2013, 9:1048-1072.
[25] Canuto GA, da Costa JL, da Cruz PL, et al. Metabolomics:defi nitions, state-of-the-art and representative applications[J]. Quím Nova, 2018, 41:75-91.
[26] Sattar N. Biomarkers for diabetes prediction, pathogenesis or pharmacotherapy guidance? Past, present and future possibilities[J]. Diabet Med, 2012, 29:5-13.
[27] Urpi-Sarda M, Almanza-Aguilera E, Llorach R, et al. Nontargeted metabolomic biomarkers and metabotypes of type 2 diabetes:a cross-sectional study of PREDIMED trial participants[J]. Diabetes Metab, 2018, 990:1-8.
[28] Knebel B, Strassburger K, Szendroedi J, et al. Specific metabolic profiles and their relationship to insulin resistance in recentonset type 1 and type 2 diabetes[J]. J Clin Endocrinol Metab, 2016, 101:2130-2140.
[29] Chen CJ, Liao WL, Chang CT, et al. Identification of urinary metabolite biomarkers of type 2 diabetes nephropathy using an untargeted metabolomic approach[J]. J Proteome Res, 2018, 17:3997-4007.
[30] Gogna N, Krishna M, Oommen AM, et al. Investigating correla tions in the altered metabolic profiles of obese and diabetic subjects in a South Indian Asian population using an NMRbased metabolomic approach[J]. Mol Biosyst, 2015, 11:595-606.
[31] Zhu Y, Cong W, Shen L, et al. Fecal metabonomic study of a polysaccharide, MDG-1 from Ophiopogon japonicus on diabetic mice based on gas chromatography/time-of-flight mass spec trometry (GC TOF/MS)[J]. Mol Biosyst, 2014, 10:304-312.
[32] Liu J, Semiz S, van der Lee SJ, et al. Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study[J]. Metabolomics, 2017, 13:104.
[33] Ma XL, Meng L, Li XX, et al. Urine metabonomics study on diabetes patients by UPLC/Q-TOF MS[J]. J Instrum Anal (分析测试学报), 2014, 33:621-627.
[34] Overgaard AJ, Weir JM, De Souza DP, et al. Lipidomic and metabolomic characterization of a genetically modified mouse model of the early stages of human type 1 diabetes pathogenesis[J]. Metabolomics, 2016, 12:13.
[35] Yokoi N, Beppu M, Yoshida E, et al. Identification of putative biomarkers for prediabetes by metabolome analysis of rat models of type 2 diabetes[J]. Metabolomics, 2015, 11:1277-1286.
[36] Lee HS, Xu T, Lee Y, et al. Identification of putative biomarkers for type 2 diabetes using metabolomics in the Korea Association REsource (KARE) cohort[J]. Metabolomics, 2016, 12:178.
[37] Zhao GH, Hou XL, Li XY, et al. Metabolomics analysis of alloxan-induced diabetes in mice using UPLC-Q-TOF-MS after Crassostrea gigas polysaccharide treatment[J]. Int J Biol Macromol, 2018, 108:550-557.
[38] Peddinti G, Cobb J, Yengo L, et al. Early metabolic markers identify potential targets for the prevention of type 2 diabetes[J]. Diabetologia, 2017, 60:1740-1750.
[39] Solini A, Manca ML, Penno G, et al. Prediction of declining renal function and albuminuria in patients with type 2 diabetes by metabolomics[J]. J Clin Endocrinol Metab, 2016, 101:696-704.
[40] Yuan KL, Kong HW, Guan YF, et al. A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2007, 850:236-240.
[41] Yi HY, Yi LZ, He RH, et al. Dynamic metabolic profiling of urine from type 2 diabetic KK-Ay mice treated with repaglinide by GC-MS[J]. Anal Lett, 2012, 45:1862-1874.
[42] Cai S, Huo TG, Xu JH, et al. Effect of mitiglinide on streptozoto cin-induced experimental type 2 diabetic rats:a urinary metabo nomics study based on ultra-performance liquid chromatographytandem mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2009, 877:3619-3624.
[43] Fall T, Salihovic S, Brandmaier S, et al. Non-targeted metabo lomics combined with genetic analyses identifies bile acid syn thesis and phospholipid metabolism as being associated with incident type 2 diabetes[J]. Diabetologia, 2016, 59:2114-2124.
[44] Su JM, Ge WH, Xu GY. Urinary metabonomics in type 2 diabetic patients[J]. Zhejiang Med J (浙江医学), 2015, 12:1217-1221.
[45] Fu H, Liu XL, Yu W, et al. Screening of urinary biomarkers in patients with type 2 diabetes mellitus[J]. J Hyg Res (卫生研究), 2013, 42:907-914.
[46] Li Y, Li JJ, Wen XD, et al. Metabonomic analysis of the thera peutic effect of Potentilla discolor in the treatment of type 2 diabetes mellitus[J]. Mol Biosyst, 2014, 10:2898-2906.
[47] Wang TJ, Debby N, Nikolaos P, et al. 2-Aminoadipic acid is a biomarker for diabetes risk[J]. J Clin Invest, 2013, 123:4309-4317.
[48] Gao JY, Xu B, Zhang XQ, et al. Association between serum bile acid profiles and gestational diabetes mellitus:a targeted metabo lomics study[J]. Clin Chim Acta, 2016, 459:63-72.
[49] Tulipani S, Palau-Rodriguez M, Alonso AM, et al. Biomarkers of morbid obesity and prediabetes by metabolomic profiling of human discordant phenotypes[J]. Clin Chim Acta, 2016, 463:53-61.
[50] Floegel A, Stefan N, Yu ZH, et al. Identification of serum metab olites associated with risk of type 2 diabetes using a targeted metabolomic approach[J]. Rev Endocr Metab Disord, 2013, 62:639-648.
[51] Zhang WD, Sun G, Likhodii S, et al. Metabolomic analysis of human synovial fluid and plasma reveals that phosphatidyl choline metabolism is associated with both osteoarthritis and diabetes mellitus[J]. Metabolomics, 2016, 12:24.
[52] Li X, Xu ZL, Lu X, et al. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for meta bonomics:biomarker discovery for diabetes mellitus[J]. Anal Chim Acta, 2009, 633:257-262.
[53] Dudzik D, Zorawski M, Skotnicki M, et al. GC-MS based gesta tional diabetes mellitus longitudinal study:identification of 2-and 3-hydroxybutyrate as potential prognostic biomarkers[J]. J Pharm Biomed Anal, 2017, 144:90-98.
[54] Li X, Xu Z, Lu X, et al. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabo nomics:biomarker discovery for diabetes mellitus[J]. Anal Chim Acta, 2009, 633:257-262.
[55] Chen XY, de Seymour JV, Han TL, et al. Metabolomic bio markers and novel dietary factors associated with gestational diabetes in China[J]. Metabolomics, 2018, 14:149.
[56] Buchwald P, Tamayo-Garcia A, Ramamoorthy S, et al. Compre hensive metabolomics study to assess longitudinal biochemical changes and potential early biomarkers in nonobese diabetic mice that progress to diabetes[J]. J Proteome Res, 2017, 16:3873-3890.
[57] Zhou Y, Hu C, Zhao XJ, et al. Serum metabolomics study of gliclazide-modified-release-treated type 2 diabetes mellitus patients using a gas chromatography-mass spectrometry method[J]. J Proteome Res, 2018, 17:1575-1585.
[58] Yan YY, Wang QH, Li WW, et al. Discovery of potential bio markers in exhaled breath for diagnosis of type 2 diabetes mellitus based on GC-MS with metabolomics[J]. RSC Adv, 2014, 4:25430-25439.
[59] Li F, Cao FR, Liu XM, et al. Sample collection and preparation of untargeted metabolomics[J]. Centr South Pharm (中南药学), 2014, 12:1217-1221.
[60] Kaddurah-Daouk R, Soares JC, Quinones MP. Metabolomics:a global biochemical approach to the discovery of biomarkers for psychiatric disorders[M]//Turck C. Biomarkers for Psychiatric Disorders. Boston:Springer US, 2009:129-162.
[61] Maher AD, Zirah SFM, Elaine H, et al. Experimental and analytical variation in human urine in 1H NMR spectroscopybased metabolic phenotyping studies[J]. Anal Chem, 2007, 79:5204-5211.
[62] Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry[J]. Nat Protoc, 2011, 6:1060-1083.
[63] Zhao CX, Xu GW. Progress of metabonomics technique based on liquid chromatography-mass spectrometry[J]. J Anal Sci (分析科学学报), 2014, 30:761-766.
[64] Wang JS. Separation science in the context of metabonomics:current platforms and future trends[J]. Prog Chem (化学进展), 2009, 21:2388-2396.
[65] Gao J, Duan C, Li LJ. The pathogenesis mechanisms of type 2 diabetes mellitus[J]. Med Recapitul (医学综述), 2015, 21:3935.
[66] Paschou SA, Papadopoulou-Marketou N, Chrousos GP, et al. On type 1 diabetes mellitus pathogenesis[J]. Endocr Connect, 2018, 7:R38-R46.
[67] Thomas OC. The complex role of branched chain amino acids in diabetes and cancer[J]. Metabolites, 2013, 3:931-945.
[68] Sas KM, Karnovsky A, Michailidis G, et al. Metabolomics and diabetes:analytical and computational approaches[J]. Diabetes, 2015, 64:718-732.
[69] Law KP, Zhang H. The pathogenesis and pathophysiology of gestational diabetes mellitus:deductions from a three-part longi tudinal metabolomics study in China[J]. Clin Chim Acta, 2017, 468:60-70.
[70] Dunkley AJ, Bodicoat DH, Greaves CJ, et al. Diabetes preven tion in the real world:effectiveness of pragmatic lifestyle inter ventions for the prevention of type 2 diabetes and of the impact of adherence to guideline recommendations:a systematic review and meta-analysis[J]. Diabetes Care, 2014, 37:922-933.
[71] Ley SH, Hamdy O, Mohan V, et al. Prevention and management of type 2 diabetes:dietary components and nutritional strategies[J]. Lancet, 2014, 383:1999-2007.
[72] Lebovitz HE. Diagnosis, classification, and pathogenesis of diabetes mellitus[J]. J Clin Exp Neuropsychol, 2001, 23:829-836.
[73] Benzadón M, Forti L, Sinay I. Update on the diagnosis of diabe tes[J]. Medicina, 2014, 74:64.
[74] Ma CX, Ying X, Kang XH. Fasting plasma glucose cut-off point for diagnosis diabetes[J]. Chin Gen Pract (中国全科医学), 2014, 17:1943-1945.
[75] Feng YD, Zhang XM, Gao YH, et al. Research status on predic tion and early clinical diagnosis of type 2 diabetes mellitus based on metabolomics[J]. Chin J Clin Pharmacol (中国临床药理学), 2017, 33:1978.
[76] Würtz P, Soininen P, Kangas AJ, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults[J]. Diabetes Care, 2013, 36:648-655.
[77] Carter TC, Rein D, Padberg I, et al. Validation of a metabolite panel for early diagnosis of type 2 diabetes[J]. Metabolism, 2016, 65:1399-1408.
[78] Bennett C, Guo M, Dharmage S. HbA1c as a screening tool for detection of type 2 diabetes:a systematic review[J]. Diabet Med, 2007, 24:333-343.
[79] Yu H, Li L, Liang QL, et al. A metabolomics study on the treat ment of diabetic nephropathy with traditional Chinese medicine Tang-shen-fang[J]. Chin J Chromatogr (色谱), 2011, 29:320-324.
[80] McKillop AM, Flatt PR. Emerging applications of metabolomic and genomic profiling in diabetic clinical medicine[J]. Diabetes Care, 2011, 34:2624-2630.
[81] Klein MS, Shearer J. Metabolomics and type 2 diabetes:trans lating basic research into clinical application[J]. J Diabetes Res, 2016, 2016:1-10.
[82] Sang YR, Jung ES, Park HM, et al. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy[J]. Metabolomics, 2018, 14:89.
[83] Fiehn O, Barupal DK, Kind T. Extending biochemical databases by metabolomic surveys[J]. J Biol Chem, 2011, 286:23637-23643.
[84] Duarte IF, Diaz SO, Gil AM. NMR metabolomics of human blood and urine in disease research[J]. J Pharm Biomed Anal, 2014, 93:17-26.
[85] Song ZK, Wang HY, Yin XT, et al. Application of NMR metabo lomics to search for human disease biomarkers in blood[J]. Clin Chem Lab Med, 2018, 2018:1-25.
[86] Blaženović I, Kind T, Ji J, et al. Software tools and approaches for compound identification of LC-MS/MS data in metabolo mics[J]. Metabolites, 2018, 8:31.
[87] Jiang CY, Wang YH. Quantitative metabolomics based on NMR[J]. Acta Pharm Sin (药学学报), 2014, 49:949-955.
[88] Qian RL. New diagnostic criteria and classification of diabetes mellitus[J]. Chin J Diabetes (中国糖尿病杂志), 2000, 8:4-5.
[89] Klein MS, Shearer J. Metabolomics and type 2 diabetes:trans lating basic research into clinical application[J]. J Diabetes Res, 2016, 2016:10.
[90] Pu C, Chen B. Application of metabolomics technology in preci sion medicine[J]. Space Med Med Eng (航天医学与医学工程), 2016, 29:144-149.
[91] Barupal D, Fan S, Fiehn O. Integrating bioinformatics approaches for a comprehensive interpretation of metabolomics datasets[J]. Curr Opin Biotechnol, 2018, 54:1-9.
[92] Zhu C, Liang QL, Wang YM, et al. Integrated development of metabonomics and its new progress[J]. Chin J Anal Chem (分析化学), 2010, 38:1060-1068.
[93] Connor SC, Hansen MK, Corner A, et al. Integration of metabo lomics and transcriptomics data to aid biomarker discovery in type 2 diabetes[J]. Mol Biosyst, 2010, 6:909-921.
相关文献:
1.季涛, 张丽丽, 黄晓晨, 宿树兰, 欧阳臻, 朱振华, 郭盛, 尚尔鑫, 钱大玮, 段金廒.基于代谢组学的桑叶多组分治疗糖尿病的作用机制研究[J]. 药学学报, 2015,50(7): 830-835
2.曾平燕, 张宇, 芮雯, 吴霞, 冯毅凡.2型糖尿病模型大鼠血浆磷脂的UPLC-Q-TOF/MS分析[J]. 药学学报, 2015,50(7): 882-886