药学学报, 2019, 54(5): 867-876
引用本文:
张立雯, 宿树兰, 戴新新, 魏丹丹, 朱悦, 钱大玮, 段金廒. 桑叶有效组分对db/db小鼠肠道菌群的调节作用[J]. 药学学报, 2019, 54(5): 867-876.
ZHANG Li-wen, SU Shu-lan, DAI Xin-xin, WEI Dan-dan, ZHU Yue, QIAN Da-wei, DUAN Jin-ao. Regulatory effect of mulberry leaf components on intestinal microflora in db/db mice[J]. Acta Pharmaceutica Sinica, 2019, 54(5): 867-876.

桑叶有效组分对db/db小鼠肠道菌群的调节作用
张立雯, 宿树兰, 戴新新, 魏丹丹, 朱悦, 钱大玮, 段金廒
南京中医药大学, 江苏省中药资源产业化过程协同创新中心, 中药资源产业化与方剂创新药物国家地方联合工程研究中心, 国家中医药管理局中药资源循环利用重点研究室, 江苏 南京 210023
摘要:
以自发性肥胖的糖尿病模型db/db小鼠为研究对象,在药效评价的基础上,通过16S rDNA测序的方法研究桑叶黄酮、多糖、生物碱对糖尿病小鼠的生物效应及其对肠道菌群的调节作用。动物实验通过了南京中医药大学伦理委员会审查,10只db/m小鼠作为空白组(control),40只db/db小鼠随机分为模型组(model)、二甲双胍组(metformin)、桑叶黄酮组(MF)、桑叶多糖组(MP)、桑叶生物碱组(MA),灌胃给药6周。结果表明,与正常组相比,db/db小鼠肠道内菌群从门水平到属水平均发生了显著变化;且模型组小鼠肠道菌中厚壁菌门、变形菌门等比例显著降低,拟杆菌的比例升高;给药后拟杆菌、厚壁菌门中的毛螺菌科、罗斯氏菌属以及脱硫杆菌属等均得到有效调节,尤其是生物碱组调节作用最为显著。这提示桑叶有效组分具有改善db/db小鼠肠道菌群失调的作用。
关键词:    桑叶      黄酮      多糖      生物碱      糖尿病      肠道菌群      db/db小鼠     
Regulatory effect of mulberry leaf components on intestinal microflora in db/db mice
ZHANG Li-wen, SU Shu-lan, DAI Xin-xin, WEI Dan-dan, ZHU Yue, QIAN Da-wei, DUAN Jin-ao
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, State Administration of Traditional Chinese Medicine Key Laboratory of Chinese Medicinal Resources Recycling Utilization, Nanjing University of Chinese Medicine, Nanjing 210023, China
Abstract:
The 16S rDNA sequencing method was adopted to study the effects of mulberry leaf flavonoids, polysaccharides and alkaloids on intestinal microflora in db/db diabetic mice. The animal experiment was examined by the Ethics Committee of Nanjing University of Chinese Medicine. Ten db/m mice were control group and forty db/db mice were randomly divided into model group, metformin group, mulberry flavonoid (MF) group, mulberry polysaccharide (MP) group and mulberry alkaloid (MA) group. After intragastric administration for six weeks, fresh feces were collected for detection of intestinal microflora. There were Firmicutes, Bacteroidetes, Proteobacteria, Saccharibacteria, Tenericutes, Deferribacteres, Verrucomicrobia, Cyanobacteria in each group. The results showed that the intestinal microflora of db/db mice changed significantly from phylum level to genus level. The proportion of Firmicutes and Proteobacteria in model group decreased significantly, and the proportion of Bacteroidetes increased. The difference in species abundance distribution between model group and other groups was significant, which indicated that the community distribution was disordered in model group. After administration, the Bacteroidetes, Lachnospiraceae, Roseburia and Desulfovibrio were effectively regulated, especially in the alkaloid group. The difference in species abundance distribution between drug-treated group and blank group also became smaller. It is suggested that the active components of mulberry leaf have the effect of improving the intestinal microflora imbalance in db/db mice.
Key words:    Morus    flavonoid    polysaccharide    alkaloid    diabetic    gut microbiota    db/db mouse   
收稿日期: 2018-10-11
DOI: 10.16438/j.0513-4870.2018-0932
基金项目: 国家自然科学基金面上项目(81373889,81673533);江苏省中药资源产业化过程协同创新中心重点项目资助(ZDXM-10).
通讯作者: 宿树兰,Tel/Fax:86-25-85811917,E-mail:sushulan1974@163.com;段金廒,E-mail:dja@njucm.edu.cn
Email: sushulan1974@163.com;dja@njucm.edu.cn
相关功能
PDF(895KB) Free
打印本文
0
作者相关文章
张立雯  在本刊中的所有文章
宿树兰  在本刊中的所有文章
戴新新  在本刊中的所有文章
魏丹丹  在本刊中的所有文章
朱悦  在本刊中的所有文章
钱大玮  在本刊中的所有文章
段金廒  在本刊中的所有文章

参考文献:
[1] Golay A, Felber JP, Jequier E, et al. Metabolic basis of obesity and noninsulin-dependent diabetes mellitus[J]. Diabetes Metab Rev, 1988, 4:727-747.
[2] Fujimoto WY. The importance of insulin resistance in the pathogenesis of type 2 diabetes mellitus[J]. Am J Med, 2000, 108:9-14.
[3] Hu XQ, Thakur K, Chen GH, et al. Metabolic effect of 1-deoxynojirimycin from mulberry leaves on db/db diabetic mice using LC-MS based metabolomics[J]. J Agric Food Chem, 2017, 65:4658-4667.
[4] Zhuang XX. The Metabonomic Study on Danzhijiangtang Capsule in Treatment of Type 2 Diabetes With Vascular Lesions Based on UPLC/QTOF-MS Method (基于UPLC/QTOF-MS技术的丹蛭降糖胶囊防治2型糖尿病血管病变的代谢组学研究)[D]. Anhui:Anhui University of Chinese Medicine, 2015.
[5] Diamant M, Blaak EE, de Vos WM. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes?[J]. Obesity Rev, 2011, 12:272-281.
[6] Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis[J]. Curr Opin Clin Nutr Metab Care, 2007, 10:729-734.
[7] Zhao X, Chen Z, Yin Y, et al. Effects of polysaccharide from Physalis alkekengi var. francheti on liver injury and intestinal microflora in type-2 diabetic mice[J]. Pharm Biol, 2017, 55:2020-2025.
[8] Cesaro C, Tiso A, Del Prete A, et al. Gut microbiota and probiotics in chronic liver diseases[J]. Digest Liver Dis, 2011, 43:431-438.
[9] Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124:837-848.
[10] Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes[J]. Nature, 2012, 490:55-60.
[11] Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472:57-63.
[12] Lin TB, Li YG, Lv ZQ, et al. Advances in the research and development on the synthesize utilization of mulberry resources[J]. Bull Sericulture (桑蚕通报), 2008, 39:1-4.
[13] Cheng FY, Ye SY. Research progress of mulberry leaves against diabetes mellitus[J]. J Pharm Pract (药学实践杂志), 2005, 23:71-74.
[14] Zhang LL, Wang YM, Xu M, et al. Antioxidant activity, phenol and flavonoid contents of fourteen mulberry varieties leaves[J]. Adv Mater Res, 2013, 781-784:1454-1459.
[15] Li FM, Zhang GP, Zou XY, et al. Research progress of flavonoids in mulberry leaves[J]. China Sericulture (中国蚕业), 2015, 36:1-4.
[16] Su SL, Duan JA, Ouyang Z, et al. Progress on resource chemistry of the medicinal plants in genus Morus L. in China[J]. Mod Chin Med (中国现代中药), 2012, 14:1-6.
[17] Li YG, Ji DF, Zhong S, et al. 1-Deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in strep tozotocin-induced diabetic mice[J]. Sci Rep, 2013, 3:1377.
[18] Deng MJ, Lin XD, Wen CW, et al. Metabolic changes in the midgut of Eri silkworm after oral administration of 1-deoxyno jirimycin:a 1H-NMR-based metabonomic study[J]. PLoS One, 2017, 12:e0173213.
[19] Ji T. The Study on Active Components Related to Diabetes Inmulberry Leaves and Its Action Mechanism (桑叶防治糖尿病的效应成分群及其作用机制研究)[D]. Nanjing:Nanjing University of Chinese Medicine, 2016.
[20] Larsen N, Vogensen FK, van den Berg FWJ, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[J]. PLoS One, 2010, 5:e9085.
[21] Chen YQ, Yan X, Chen MJ, et al. Anti-diabetic activity of alcohol extracts from lessonia nigrescens and its effects on intestinal microflora in mice[J]. Biotechnol Bull (生物技术通报), 2017, 33:162-169.
[22] Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity, 2010, 18:190-195.
[23] Dai XX, Cai HD, Su SL, et al. Regulatory effect of the leaves of Rehmannia glutinosa Libosch on intestinal microflora in diabetic nephropathy rats[J]. Acta Pharm Sin (药学学报), 2017, 52:1683-1691.
[24] Hamer HM, Jonkers D, Venema K, et al. Review article:the role of butyrate on colonic function[J]. Aliment Pharmacol Ther, 2008, 27:104-119.
[25] Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. Fems Microbiol Lett, 2009, 294:1-8.
[26] Machiels K, Joossens M, Sabino J, et al.A decrease of the butyrateproducing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis[J]. Gut, 2014, 63:1275-1283.
[27] Neyrinck AM, Possemiers S, Verstraete W, et al. Dietary modula tion of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice[J]. J Nutr Biochem, 2012, 23:51-59.
[28] Nicolau CD, Berg B, Rezzonico E, et al. The relationship between Lachnospiraceae in intestinal microflora and body weight:CN, 105142654 A[P]. 2015.
[29] Devillard E, Mcintosh FM, Duncan SH, et al. Metabolism of linoleic acid by human gut bacteria:different routes for biosyn thesis of conjugated linoleic acid[J]. J Bacteriol, 2007, 189:2566-2570.
[30] Benjamin S, Spener F. Conjugated linoleic acids as functional food:an insight into their health benefits[J]. Nutr Metab, 2009, 6:36.
[31] Fox JG, Dewhirst FE, Fraser GJ, et al. Intracellular campylo bacter-like organism from ferrets and hamsters with proliferative bowel disease is a Desulfovibrio sp.[J]. J Clin Microbiol, 1994, 32:1229-1237.
[32] Gosalbes MJ, Vázquez Castellanos JF, Angebault C, et al. Carriage of enterobacteria producing extended-spectrum β-lactamases and composition of the gut microbiota in an amerindian community[J]. Antimicrob Agents Chemother, 2016, 60:507-514.
相关文献:
1.戴新新, 蔡红蝶, 宿树兰, 郑天瑶, 魏丹丹, 严辉, 朱悦, 钱大玮, 段金廒.地黄叶对糖尿病肾病大鼠肠道菌群的调节作用[J]. 药学学报, 2017,52(11): 1683-1691
2.季涛, 张丽丽, 黄晓晨, 宿树兰, 欧阳臻, 朱振华, 郭盛, 尚尔鑫, 钱大玮, 段金廒.基于代谢组学的桑叶多组分治疗糖尿病的作用机制研究[J]. 药学学报, 2015,50(7): 830-835
3.赵景壮, 孙国鹏, 叶贤龙, 李晋南, 任桂萍, 王文飞, 刘铭瑶, 李德山.鼠源成纤维细胞生长因子-21的长效降糖效果[J]. 药学学报, 2013,48(3): 352-358
4.杨燕 王洪庆 陈若芸.桑叶中的黄酮类化合物[J]. 药学学报, 2010,45(1): 77-81