药学学报, 2019, 54(5): 886-891
引用本文:
徐峰, 海澳, 马雅茹, 仇丽颖, 李敏勇, 杜吕佩. 基于luciferin-luciferase体系的肼生物发光探针的合成、体外评价及活体成像[J]. 药学学报, 2019, 54(5): 886-891.
XU Feng, HAI Ao, MA Ya-ru, QIU Li-ying, LI Min-yong, DU Lü-pei. Synthesis, in vitro evaluation and in vivo imaging of a highly selective hydrazine bioluminescent probe based on luciferin-luciferase system[J]. Acta Pharmaceutica Sinica, 2019, 54(5): 886-891.

基于luciferin-luciferase体系的肼生物发光探针的合成、体外评价及活体成像
徐峰1, 海澳2, 马雅茹2, 仇丽颖2, 李敏勇1, 杜吕佩1
1. 山东大学药学院药物化学研究所化学生物学重点实验室, 山东 济南 250012;
2. 西南民族大学药学院, 四川 成都 610041
摘要:
本文设计合成了一个用于可视化分析检测肼(N2H4)的生物发光探针(bioluminescent probe for hydrazine,BPH),并完成对其光学响应性能和活体成像的评价。本文所描述的肼生物发光探针(BPH)是通过在光学报告基团萤火虫荧光素(firefly luciferin)的适当修饰位点合理设计引入肼的特异性识别基团(乙酰基)以达到检测肼的目的,并且该探针以高选择性和高灵敏度等显著优点成功应用于活体水平对肼的可视化分析。实验结果表明,无论是在复杂的自然环境中还是在动物体内,本研究所发展的生物发光探针BPH是一种具有高创新性和广泛应用价值的检测肼的方法。
关键词:          肼生物发光探针      萤火虫荧光素      小分子探针      活体成像     
Synthesis, in vitro evaluation and in vivo imaging of a highly selective hydrazine bioluminescent probe based on luciferin-luciferase system
XU Feng1, HAI Ao2, MA Ya-ru2, QIU Li-ying2, LI Min-yong1, DU Lü-pei1
1. Department of Medicinal Chemistry, Key Laboratory of Chemical Biology(MOE), School of Pharmacy, Shandong University, Jinan 250012, China;
2. School of Pharmacy, Southwest Minzu University, Chengdu 610041, China
Abstract:
A highly sensitive and selective bioluminescent probe for hydrazine (BPH) was designed, synthe sized and evaluated for detection of hydrazine in vitro and in vivo. BPH was designed to include a specific recogni tion group (acetyl) of hydrazine at an appropriate modification site of the optical reporter hydroxyluciferin (Dluciferin), which showed excellent performance both in selectivity and sensitivity to hydrazine. The results showed that the bioluminescent probe BPH developed in this study is an innovative and widely applicable tool for detecting hydrazine in complex natural environment or in animals.
Key words:    hydrazine    bioluminescent probe for hydrazine    D-luciferin    small molecule probe    in vivo imaging   
收稿日期: 2019-01-21
DOI: 10.16438/j.0513-4870.2019-0067
通讯作者: 杜吕佩,Tel/Fax:86-531-88382006,E-mail:dulupei@sdu.edu.cn
Email: dulupei@sdu.edu.cn
相关功能
PDF(549KB) Free
打印本文
0
作者相关文章
徐峰  在本刊中的所有文章
海澳  在本刊中的所有文章
马雅茹  在本刊中的所有文章
仇丽颖  在本刊中的所有文章
李敏勇  在本刊中的所有文章
杜吕佩  在本刊中的所有文章

参考文献:
[1] Cui L, Ji C, Peng Z, et al. Unique tri-output optical probe for specific and ultrasensitive detection of hydrazine[J]. Anal Chem, 2014, 86:4611-4617.
[2] Choi MG, Hwang J, Moon JO, et al. Hydrazine-selective chro mogenic and fluorogenic probe based on levulinated coumarin[J]. Org Lett, 2011, 13:5260-5263.
[3] No authors listed. Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. Proceedings of the IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, France, 17-24 February 1998[J]. IARC Monogr Eval Carcinog Risks Hum, 1999, 71 Pt 1:1-315.
[4] Theisen S, Hänsch R, Kothe L, et al. A fast and sensitive HPLC method for sulfite analysis in food based on a plant sulfite oxidase biosensor[J]. Biosens Bioelectron, 2010, 26:175-181.
[5] Gao Y, Lin Y, Liu T, et al. Bioluminescent probe for tumor hypoxia detection via CYP450 reductase in living animals[J]. Anal Chem, 2017, 89:12488-12493.
[6] Jiang T, Ke B, Chen H, et al. Bioluminescent probe for detecting mercury(ii) in living mice[J]. Anal Chem, 2016, 88:7462-7465.
[7] Ke B, Chen H, Ma L, et al. Visualization of mercury(ii) accumu lation in vivo using bioluminescence imaging with a highly selec tive probe[J]. Org Biomol Chem, 2018, 16:2388-2392.
[8] Ke B, Wu W, Wei L, et al. Cell and in vivo imaging of fluoride ion with highly selective bioluminescent probes[J]. Anal Chem, 2015, 87:9110-9113.
[9] Tang C, Gao Y, Liu T, et al. Bioluminescent probe for detecting endogenous hypochlorite in living mice[J]. Org Biomol Chem, 2018, 16:645-651.
[10] Lin Y, Gao Y, Ma Z, et al. Bioluminescence probe for gammaglutamyl transpeptidase detection in vivo[J]. Bioorg Med Chem, 2018, 26:134-140.
[11] Feng P, Zhang H, Deng Q, et al. Real-time bioluminescence imaging of nitroreductase in mouse model[J]. Anal Chem, 2016, 88:5610-5614.
[12] Ke B, Wu W, Liu W, et al. Bioluminescence probe for detecting hydrogen sulfide in vivo[J]. Anal Chem, 2016, 88:592-595.
[13] Christopher BM, Banks CE, Simm AO, et al. The electroanalytical detection of hydrazine:a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array[J]. Analyst, 2005, 131:106-110.
[14] Tang YH, Lee DY, Wang JL, et al. Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging[J]. Chem Soc Rev, 2015, 44:5003-5015.
[15] Tai W, Sun MM, Liu N, et al. Study on the anti-tumor effect of paclitaxel mixed micelle by using in vivo optical imaging technique[J]. Acta Pharm Sin (药学学报), 2010, 45:530-534.
[16] O'Brien MA. Homogeneous, bioluminescent protease assays:caspase-3 as a model[J]. J Biomol Screening, 2005, 10:137-148.
[17] Cali JJ, Ma D, Sobol M, et al. Luminogenic cytochrome P450 assays[J]. Expert Opin Drug Metab Toxicol, 2006, 2:629-645.