药学学报, 2019, 54(5): 913-918
引用本文:
李翠, 陈迎春, 曾清泉, 雷少伟, 周慧, 蒋惠娣, 李丽萍. 氯化两面针碱在大鼠心脏中的积聚及其机制研究[J]. 药学学报, 2019, 54(5): 913-918.
LI Cui, CHEN Ying-chun, ZENG Qing-quan, LEI Shao-wei, ZHOU Hui, JIANG Hui-di, LI Li-ping. Accumulation of nitidine chloride in rat heart and the underlying mechanism[J]. Acta Pharmaceutica Sinica, 2019, 54(5): 913-918.

氯化两面针碱在大鼠心脏中的积聚及其机制研究
李翠1,2, 陈迎春2, 曾清泉2, 雷少伟1,2, 周慧2, 蒋惠娣2, 李丽萍2
1. 浙江工业大学长三角绿色制药协同创新中心, 浙江 杭州 310014;
2. 浙江大学药学院药物代谢与分析实验室, 浙江省抗肿瘤药物重点实验室, 浙江 杭州 310058
摘要:
氯化两面针碱(nitidine chloride,NC)为抗肿瘤候选化合物。本研究考察其在大鼠心脏的分布及其机制,为其潜在的心脏毒性提供依据。动物实验获得了浙江大学医学中心动物保护和使用委员会的批准(2015-380-01),符合中国动物福利标准。大鼠单次静脉注射5 mg·kg-1 NC后0.25、0.5和2 h,心脏中NC浓度分别为47.7、71.1和63.2 μg·g-1,与相同时间点血浆中的浓度比分别为576、1 352和1 212。大鼠连续静脉注射5 mg·kg-1 NC 20天,末次给药后2 h,心脏中NC浓度为458.5 μg ·g-1,与血浆中的浓度比为7 336。NC在MDCK-hOCT1、MDCK-hOCT3中的积聚分别为mock细胞的16.1、4.99倍,但在MDCK-hOCTN1、MDCK-hOCTN2、MDCK-hPMAT中的积聚与mock细胞未显示明显差异。此外,OCTs的抑制剂奎尼丁、左旋延胡索乙素、Decynium 22可显著降低NC在原代培养的乳大鼠心肌细胞和成纤维细胞中的积聚。MTT结果显示,NC在心肌细胞和成纤维细胞上的LC50分别为10.9和10.4 μmol·L-1。此外,不同浓度的NC可显著增加原代心肌细胞和成纤维细胞中LDH酶渗漏。上述结果表明,NC在大鼠心脏积聚和蓄积,对原代心肌细胞和成纤维细胞具有一定的毒性;OCT1和OCT3可介导NC的心脏积聚。
关键词:    氯化两面针碱      心脏积聚      OCT1和OCT3转运体      心脏毒性     
Accumulation of nitidine chloride in rat heart and the underlying mechanism
LI Cui1,2, CHEN Ying-chun2, ZENG Qing-quan2, LEI Shao-wei1,2, ZHOU Hui2, JIANG Hui-di2, LI Li-ping2
1. Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China;
2. Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Abstract:
Nitidine chloride (NC) is a compound with prominent anti-tumor activity. To determine potential cardiotoxicity of NC, this study was designed to investigate the distribution of NC in rat heart and the underlying mechanism. The animal studies were approved by Institutional Animal Care and Use Committee of Zhejiang University Medical Center (2015-380-01) and complied with the standards of animal welfare in China. At 0.25, 0.5 and 2 h after a single intravenous injection (iv) of 5 mg·kg-1 NC, the concentrations of NC in rat heart were 47.7, 71.1 and 63.2 μg·g-1 respectively, which were 576, 1 352 and 1 212 folds of that in plasma. This study also revealed that the NC concentration in heart was 458.5 μg·g-1 (7 336 folds of that in plasma) at 2 h after the last dose in rats, after daily iv administration of NC at 5 mg·kg-1·day-1 for successive 20 days. Further studies showed that the accumulations of NC in MDCK-hOCT1 and MDCK-hOCT3 cells were 16.1 and 4.99 folds higher than that of the mock cells, respectively. There is no significant difference between the accumulations of NC in MDCK cells transfected with hOCTN1, hOCTN2 or hPMAT and the mock cells. Additionally, quinidine, L-tetrahydropalmatine and Decynium 22, the inhibitors of OCTs, clearly reduced the accumulations of NC in primary cardiomyocytes and cardiac fibroblasts from neonatal rats. MTT assay showed that the LC50 of NC on cardiomyocytes and cardiac fibroblasts were 10.9 and 10.4 μmol·L-1, respectively. Moreover, treatment of the primary cardiomyocytes and cardiac fibroblasts with NC (1~15 μmol·L-1) for 48 h resulted in significantly increased LDH enzyme leakage. These results indicated that NC can be highly accumulated in the heart, and accumulation is mediated by OCT1 and OCT3, but not by OCTN1, OCTN2 and PMAT. The accumulated NC has potential cytotoxicity as shown in the results from primary cardiomyocytes and cardiac fibroblasts.
Key words:    nitidine chloride    cardiac accumulation    organic cation transporter 1 and 3 (OCT1, OCT3)    car diotoxicity   
收稿日期: 2019-01-02
DOI: 10.16438/j.0513-4870.2019-0001
基金项目: 国家自然科学基金资助项目(81872929);浙江省自然科学基金资助项目(LY19H310005).
通讯作者: 李丽萍,Tel/Fax:86-571-88208417,E-mail:lillylp@zju.edu.cn
Email: lillylp@zju.edu.cn
相关功能
PDF(445KB) Free
打印本文
0
作者相关文章
李翠  在本刊中的所有文章
陈迎春  在本刊中的所有文章
曾清泉  在本刊中的所有文章
雷少伟  在本刊中的所有文章
周慧  在本刊中的所有文章
蒋惠娣  在本刊中的所有文章
李丽萍  在本刊中的所有文章

参考文献:
[1] Yang XF, Lu XS. Using HPLC method to determine the content of the two side of chloride in the tri-ninth gastric granules[J]. Chin J Ethnomed Ethnopharm (中国民族民间医药), 2017, 26:25-27.
[2] Li LP, Tu MJ, Yang X, et al. The contribution of human OCT1, OCT3, and CYP3A4 to nitidine chloride-induced hepatocellular toxicity[J]. Drug Metab Dispos, 2014, 42:1227-1234.
[3] Chen SP, Yang L, Feng J. Nitidine chloride inhibits proliferation and induces apoptosis in ovarian cancer cells by activating the Fas signalling pathway[J]. J Pharm Pharmacol, 2018, 70:778-786.
[4] Liu LM, Xiong DD, Lin P, et al. DNA topoisomerase 1 and 2 A function as oncogenes in liver cancer and may be direct targets of nitidine chloride[J]. Int J Oncol, 2018, 53:1897-1912.
[5] Huan HL, Liu HG, Meng Y, et al. Effect of nitidine chloride on the heart development of zebra fish embryos[J]. Guangxi Med J (广西医学), 2011, 33:546-548.
[6] Koepsell H, Lips K, Volk C. Polyspecific organic cation trans porters:structure, function, physiological roles, and biopharma ceutical implications[J]. Pharm Res, 2007, 24:1227-1251.
[7] Barnes K, Dobrzynski H, Foppolo S, et al. Distribution and func tional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH[J]. Circ Res, 2006, 99:510-519.
[8] Tu MJ, Sun SY, Wang K, et al. Organic cation transporter 1 mediates the uptake of monocrotaline and plays a key role in its hepatotoxicity[J]. Toxicology, 2013, 311:225-230.
[9] Sun SY, Wang K, Lei HM, et al. Inhibition of organic cation transporter 2 and 3 may be involved in the mechanism of the antidepressant-like action of berberine[J]. Prog Neuropsycho pharmacol Biol Psychiatry, 2014, 49:1-6.
[10] Weng YY, Jin LS, Wang YQ, et al. Establishment and application of cell models with stable expression of hOCTN1/2[J]. Acta Pharm Sin (药学学报), 2016, 51:931-937.
[11] Sun SY, Zhou SS, Lei SW, et al. Jatrorrhizine reduces 5-HT and NE uptake via inhibition of uptake-2 transporters and produces antidepressant-like action in mice[J]. Xenobiotica, 2018. DOI:10.1080/00498254.2018.1542188.
[12] Louch WE, Sheehan KA, Wolska BM. Methods in cardio myocyte isolation, culture, and gene transfer[J]. J Mol Cell Cardiol, 2011, 51:288-298.
[13] Li LP, Song FF, Weng YY, et al. Role of OCT2 and MATE1 in renal disposition and toxicity of nitidine chloride[J]. Br J Pharmacol, 2016, 173:2543-2554.
[14] Wagner DJ, Hu T, Wang J. Polyspecific organic cation trans porters and their impact on drug intracellular levels and pharma codynamics[J]. Pharmacol Res, 2016, 111:237-246.
[15] Grube M, Ameling S, Noutsias M, et al. Selective regulation of cardiac organic cation transporter novel type 2(OCTN2) in dilated cardiomyopathy[J]. Am J Pathol, 2011, 178:2547-2559.
[16] Bourdet DL, Pritchard JB, Thakker DR. Differential substrate and inhibitory activities of ranitidine and famotidine toward human organic cation transporter 1(hOCT1; SLC22A1), hOCT2(SLC22A2), and hOCT3(SLC22A3)[J]. J Pharmacol Exp Ther, 2005, 315:1288-1297.
[17] Hayer-Zillgen M, Brüss M, Bönisch H. Expression and pharma cological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3[J]. Br J Pharmacol, 2002, 136:829-836.
[18] Krishnamurthy K, Vedam K, Kanagasabai R, et al. Heat shock factor-1 knockout induces multidrug resistance gene, MDR1b, and enhances P-glycoprotein (ABCB1)-based drug extrusion in the heart[J]. Proc Natl Acad Sci U S A, 2012, 109:9023-9028.
[19] Dazert P, Meissner K, Vogelgesang S, et al. Expression and localization of the multidrug resistance protein 5(MRP5/ABCC5), a cellular export pump for cyclic nucleotides, in human heart[J]. Am J Pathol, 2003, 163:1567-1577.
[20] Doherty KR, Wappel RL, Talbert DR, et al. Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes[J]. Toxicol Appl Pharmacol, 2013, 272:245-255.
[21] Li XH, Tang NF, Li YQ, et al. Cytoprotective effect of p62/Nrf2 signaling pathway[J]. Acta Pharm Sin (药学学报), 2018, 53:1995-2005.
[22] Planavila A, Redondo-Angulo I, Ribas F, et al. Fibroblast growth factor 21 protects the heart from oxidative stress[J]. Cardiovasc Res, 2015, 106:19-31.
[23] Rossato LG, Costa VM, de Pinho PG, et al. Structural isomeriza tion of synephrine influences its uptake and ensuing glutathione depletion in rat-isolated cardiomyocytes[J]. Arch Toxicol, 2011, 85:929-939.