药学学报, 2019, 54(5): 944-953
引用本文:
倪梁红, 赵志礼, 吴靳荣, 嘎务, 米玛. 藏药解吉基原植物转录组及其环烯醚萜苷类生物合成相关基因的探究[J]. 药学学报, 2019, 54(5): 944-953.
NI Liang-hong, ZHAO Zhi-li, WU Jin-rong, GAAWE Dorje, MI Ma. Analysis of transcriptomes to explore genes contributing to iridoid biosynthesis in Gentiana waltonii and Gentiana robusta (Gentianaceae)[J]. Acta Pharmaceutica Sinica, 2019, 54(5): 944-953.

藏药解吉基原植物转录组及其环烯醚萜苷类生物合成相关基因的探究
倪梁红1, 赵志礼1, 吴靳荣1, 嘎务2, 米玛2
1. 上海中医药大学中药学院, 上海 201203;
2. 西藏藏医药大学, 西藏 拉萨 850000
摘要:
藏药解吉,来源为龙胆科龙胆属Gentiana秦艽组(Sect.Cruciata)多种高山植物;可分为解吉那保(具蓝紫色花的)与解吉嘎保(具白色花的)两个品种。首次以解吉那保基原植物之一——长梗秦艽Gentiana waltonii Burk.与解吉嘎保基原植物之一——粗壮秦艽Gentiana robusta King ex Hook.f.为模式植物,分别构建其根、茎、叶、花转录组数据库。对原始数据进行除杂,将质控后得到的所有高质量序列进行de novo拼接,分别得到长梗秦艽79 455条、粗壮秦艽78 466条unigene,平均长度分别为834 bp和862 bp。根据GO功能分类,可将unigene分为3大类65分支;根据KOG功能可将unigene分为25类;KEGG代谢通路分析分别发现长梗秦艽和粗壮秦艽中315条、340条unigene参与到20个次生代谢标准通路中。环烯醚萜苷类为藏药解吉及中药秦艽类、龙胆类、当药及青叶胆等药材的指标性成分及活性成分之一,分析结果显示:分别有80条、57条unigene参与编码环烯醚萜苷类合成途径中的24个关键酶,且在不同部位中的表达存在差异;还发现多个SSR和SNP、InDel位点。本工作可为藏药材基原植物遗传图谱构建,分子标记开发,功能基因掌握,有效成分累积规律、道地性形成机制、藏药材品种科学内涵的探讨,分子育种及濒危藏药高山植物就地保护等提供基础科学资料。
关键词:    长梗秦艽      粗壮秦艽      转录组      环烯醚萜苷类      生物合成      代谢通路     
Analysis of transcriptomes to explore genes contributing to iridoid biosynthesis in Gentiana waltonii and Gentiana robusta (Gentianaceae)
NI Liang-hong1, ZHAO Zhi-li1, WU Jin-rong1, GAAWE Dorje2, MI Ma2
1. School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
2. Tibetan Traditional Medical College, Lhasa 850000, China
Abstract:
The roots and flowers of Gentiana waltonii and Gentiana robusta are used as Tibetan herb Jie-Ji in traditional Tibetan medicine, with iridoids as the main active ingredient and index components. To study the pathway of iridoid biosynthesis, roots, stems, leaves and flowers of G. waltonii and G. robusta were subjected to a high-throughput transcriptomic sequencing analysis by Illumina HiseqXTen. After removing insignificant reads and de novo splicing, 79 455 and 78 466 unigenes were obtained from G. waltonii and G. robusta respectively, with average length as 834 bp and 862 bp. The unigene GO functions could be divided into three categories of 65 branches. The unigenes were aligned in KOG database and were classified into 25 classes according to function. In KEGG database, 315 and 340 unigenes of G. waltonii and G. robusta were implicated in 20 standard secondary metabolic pathways, respectively. Furthermore, 80 and 57 unigenes of the two species were analyzed to encode 24 key enzymes in the pathway related to iridoid biosynthesis. There were differences in gene expression among different organs. Based on sequence data, significant amounts of SSRs, SNPs and InDels were detected in each dataset. This study provides a platform for further development of molecular markers, excavation of functional genes, and research into metabolic pathways and their regulatory mechanism within G. waltonii and G. robusta.
Key words:    Gentiana waltonii    Gentiana robusta    transcriptome    iridoids    biosynthesis    metabolism pathway   
收稿日期: 2019-01-28
DOI: 10.16438/j.0513-4870.2019-0082
基金项目: 国家自然科学基金青年科学基金资助项目(81503354);国家自然科学基金资助项目(81173654).
通讯作者: 赵志礼,Tel:86-21-51322202,E-mail:zhilzhao@sohu.com
Email: zhilzhao@sohu.com
相关功能
PDF(941KB) Free
打印本文
0
作者相关文章
倪梁红  在本刊中的所有文章
赵志礼  在本刊中的所有文章
吴靳荣  在本刊中的所有文章
嘎务  在本刊中的所有文章
米玛  在本刊中的所有文章

参考文献:
[1] Yutok Yonten Gonpo. The Four Medical Tantras (四部医典)[M]. Shanghai:Shanghai Science & Technology Press, 1987:66.
[2] Dimaer Danzeng Pengcuo. Jing Zhu Ben Cao (晶珠本草)[M]. Shanghai:Shanghai Science & Technology Press, 1986:105-106, 119.
[3] Yang YC. Tibetan Medicine (藏药志)[M]. Xining:Qinghai People Press, 1991:9-12, 213-218.
[4] Zhao ZL, Dorje Gaawe, Wang ZT. Identification of medicinal plants used as Tibetan traditional medicine Jie-Ji[J]. J Ethno pharmacol, 2010, 132:122-126.
[5] Ni LH, Zhao ZL. A morphometric comparison of three closely related species of Gentiana (Gentianaceae), endemic to the region of the Qinghai-Tibet Plateau[J]. Botany, 2018, 96:209-215.
[6] Ni LH, Zhao ZL, Xu HX, et al. Chloroplast genome structures in Gentiana (Gentianaceae), based on three medicinal alpine plants used in Tibetan herbal medicine[J]. Curr Genet, 2017, 63:241-252.
[7] Ni LH, Zhao ZL, Xu HX, et al. The complete chloroplast genome of Gentiana straminea, (Gentianaceae), an endemic species to the Sino-Himalayan subregion[J]. Gene, 2016, 577:281-288.
[8] Xiong B, Zhao ZL, Ni LH, et al. DNA-based identification of Gentiana robusta and related species[J]. China J Chin Mater Med (中国中药杂志), 2015, 40:4680-4685.
[9] Ni LH, Zhao ZL, Xiong B, et al. A strategy for identifying six species of Sect. Cruciata (Gentiana) in Gansu using DNA barcode sequences[J]. Acta Pharm Sin (药学学报), 2016, 51:821-827.
[10] Wei SJ, Zhao ZL, Ni LH, et al. Taxonomic identification of Tibetan herb Bawo Sebo and its chloroplast genome structure[J]. Acta Pharm Sin (药学学报), 2018, 53:1009-1015.
[11] Zheng LS, Lu XQ. Advances in the research of iridoids[J]. Nat Prod Res Dev (天然产物研究与开发), 2009, 21:702-711, 725.
[12] Chinese Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China. Part 1(中华人民共和国药典)[S]. Beijing:China Medical Science Press, 2015:96, 134-135, 196-197, 270-271.
[13] Ozsolak F, Milos PM. RNA sequencing:advances, challenges and opportunities[J]. Nat Rev Genet, 2011, 12:87-98.
[14] Wang YL, Huang LQ, Yuan Y, et al. Research advances on analysis of medicinal plants transcriptome[J]. China J Chin Mater Med (中国中药杂志), 2015, 40:2055-2061.
[15] Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcrip tome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29:644-652.
[16] Thiel T, Michalek W, Varshney RK, et al. Exploiting EST data bases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.)[J]. Theor Appl Genet, 2003, 106:411-422.
[17] Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estima tion from sequencing data[J]. Bioinformatics, 2011, 27:2987-2993.
[18] Contin A, Heijden RVD, Lefeber AWM, et al. The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture[J]. Febs Lett, 1998, 434:413-416.
[19] Yang R, Fang L, Li J, et al. Research progress on biosynthetic pathways and related enzymes of iridoid glycosides[J]. Chin Tradit Herb Drugs (中草药), 2018, 49:2482-2488.
[20] Wu XY, Liu XL. Progress of biosynthetic pathway and the key enzyme genes of iridoids[J]. Chin J Ethnomed Ethnopharm (中国民族民间医药), 2017, 26:44-48.
[21] Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data:RPKM measure is inconsistent among samples[J]. Theory Biosci, 2012, 131:281-285.
[22] Li H, Zhang N, Li YM, et al. High-throughput transcriptomic sequencing of Rheum palmatum L. seedlings and elucidation of genes in anthraquinone biosynthesis[J]. Acta Pharm Sin (药学学报), 2018, 53:1908-1917.
[23] Zhou XJ, Xu HF, Shun QS. Resource Science of Chinese Medicinal Materials (中药资源学)[M]. Shanghai:Shanghai Scientific and Technological Literature Publishing House, 2007:370.
[24] Jiang C, Yuan Y, Liu GM, et al. EST-SSR identification of Lonicera japonica Thunb.[J]. Acta Pharm Sin (药学学报), 2012, 47:803-810.
[25] Kim HJ, Jung J, Kim MS, et al. Molecular marker development and genetic diversity exploration by RNA-Seq in Platycodon Grandiflorum[J]. Genome, 2015, 58:1-11.
[26] Zhou D, Gao S, Wang H, et al. De novo sequencing transcrip tome of endemic Gentiana straminea (Gentianaceae) to identify genes involved in the biosynthesis of active ingredients[J]. Gene, 2015, 575:160-170.
[27] Liu Y, Yue CJ, Wang Y, et al. Data mining of simple sequence repeats in transcriptome sequences of Tibetan medicinal plant Zangyinchen Swertia mussotii[J]. China J Chin Mater Med (中国中药杂志), 2015, 40:2068-2076.
相关文献:
1.李欢, 张娜, 李依民, 黑小斌, 李元敏, 邓翀, 颜永刚, 刘蒙蒙, 张岗.利用转录组测序挖掘掌叶大黄蒽醌类生物合成相关基因[J]. 药学学报, 2018,53(11): 1908-1917
2.赵乐, 朱畇昊, 张莉, 马利刚, 冯卫生, 郑晓珂.基于转录组测序挖掘商陆皂苷甲生物合成相关基因[J]. 药学学报, 2017,52(9): 1471-1480