药学学报, 2019, 54(6): 963-970
引用本文:
余露山, 毕惠嫦, 吴宝剑, 葛广波, 郑江, 乔海灵, 曾苏. 2018年中国药物代谢研究进展[J]. 药学学报, 2019, 54(6): 963-970.
YU Lu-shan, BI Hui-chang, WU Bao-jian, GE Guang-bo, ZHENG Jiang, QIAO Hai-ling, ZENG Su. 2018 DMPK research progress in China[J]. Acta Pharmaceutica Sinica, 2019, 54(6): 963-970.

2018年中国药物代谢研究进展
余露山1, 毕惠嫦2, 吴宝剑3, 葛广波4, 郑江5,6, 乔海灵7, 曾苏1
1. 浙江大学药学院, 浙江 杭州 310058;
2. 中山大学药学院, 广东 广州 510006;
3. 暨南大学药学院, 广东 广州 510632;
4. 上海中医药大学交叉科学研究院, 上海 201203;
5. 沈阳药科大学, 辽宁 沈阳 110016;
6. 贵州医科大学, 贵州 贵阳 550004;
7. 郑州大学基础医学院, 河南 郑州 450001
摘要:
本文总结了2018年中国学者在药物代谢领域的研究进展。该年度,中国学者聚焦药物代谢酶和药物转运体,开展活性分子药物代谢/转运机制研究、药物代谢酶和转运体的调节机制及其用于药物和疾病的研究、基于药物代谢/转运的药物毒性机制和临床合理用药研究、肠道菌群药物代谢、中药代谢和DMPK新技术和新模型研究等,取得了一系列国际前沿的创新性成果。近年来,中国的药物代谢研究正由新药研发和合理用药导向研究为主,向创新驱动和机制导向深度研究并重转型,研究方向和水平逐步与国际接轨。
关键词:    药物代谢      药物代谢酶      药物转运体      调节机制     
2018 DMPK research progress in China
YU Lu-shan1, BI Hui-chang2, WU Bao-jian3, GE Guang-bo4, ZHENG Jiang5,6, QIAO Hai-ling7, ZENG Su1
1. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
2. School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
3. School of Pharmacy, Jinan University, Guangzhou 510632, China;
4. Institute of Interdisciplinary Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
5. Shenyang Pharmaceutical University, Shenyang 110016, China;
6. School of Pharmacy, Guizhou Medical University, Guiyang 550004, China;
7. Basic Medical College, Zhengzhou University, Zhengzhou 450001, China
Abstract:
This paper summarizes research progresses of Chinese scholars in the field of drug metabolism and pharmacokinetics (DMPK) in 2018. Chinese scholars focused on drug metabolizing enzymes and transporters, and carried out studies on the mechanisms of drug metabolism and transport of active molecules. Topics of research included regulatory mechanisms of drug metabolizing enzymes or transporters, and their implications in drug development and disease etiology or progression. Here, we summarized studies on drug toxicity based on drug metabolism or transport, rational drug use in the clinic, drug metabolism mediated by intestinal flora, metabolism of traditional Chinese medicines, and new technologies or models in DMPK. In recent years, the research focus of drug metabolism in China has transformed from serving for new drug discovery and rational use, to innovation driven and mechanism oriented research. The domestic research topics and technology utilization are gradually aligning with the international conventions.
Key words:    drug metabolism    drug metabolic enzymes    drug transporters    regulation mechanism   
收稿日期: 2019-02-26
DOI: 10.16438/j.0513-4870.2019-0138
基金项目: 国家重点研发计划精准医学研究重点专项(2017YFC0908600).
通讯作者: 曾苏
Email: zengsu@zju.edu.cn
相关功能
PDF(601KB) Free
打印本文
0
作者相关文章
余露山  在本刊中的所有文章
毕惠嫦  在本刊中的所有文章
吴宝剑  在本刊中的所有文章
葛广波  在本刊中的所有文章
郑江  在本刊中的所有文章
乔海灵  在本刊中的所有文章
曾苏  在本刊中的所有文章

参考文献:
[1] Liu Y, Hong L, Yu LS, et al. The role of ADME evaluation in translation research of innovative drug[J]. Acta Pharm Sin (药学学报), 2011, 46:19-29.
[2] USFDA. In vitro metabolism-and transporter-mediated drug-drug interaction studies guidance for industry[R]. 2017.
[3] USFDA. Clinical drug interaction studies-Study design, analysis data, and clinical implications guidance for industry[R]. 2017.
[4] Yu LS, Bi HC, Hao HP, et al. Analysis of the projects in DM/PK funded by NSFC and the development and prospect of the related basic research[J]. Prog Pharm Sci (药学进展), 2016, 40:358-362.
[5] Zhang JW, Xiao W, Gao ZT, et al. Metabolism of c-Met kinase inhibitors containing quinoline by aldehyde oxidase, electron donating, and steric hindrance effect[J]. Drug Metab Dispos, 2018, 46:1847-1855.
[6] Xie C, Gao X, Sun D, et al. Metabolic profiling of the novel hypoxia-inducible factor 2α inhibitor PT2385 in vivo and in vitro[J]. Drug Metab Dispos, 2018, 46:336-345.
[7] Hou X, Zhou J, Yu S, et al. Differences in the in vivo and in vitro metabolism of imrecoxib in humans:formation of the rate-limiting aldehyde intermediate[J]. Drug Metab Dispos, 2018, 46:1320-1328.
[8] Ji JZ, Tai T, Huang BB, et al. Mrp3 Transports clopidogrel acyl glucuronide from the hepatocytes into blood[J]. Drug Metab Dispos, 2018, 46:151-154.
[9] Yu F, Zhang T, Guo L, et al. Liver receptor homolog-1 regulates organic anion transporter 2 and docetaxel pharmacokinetics[J]. Drug Metab Dispos, 2018, 46:980-988.
[10] Lu D, Dong D, Xie Q, et al. Disposition of mianserin and cyclizine in UGT2B10-overexpressing human embryonic kidney 293 cells:identification of UGT2B10 as a novel N-glucosidation enzyme and breast cancer resistance protein as an N-glucoside transporter[J]. Drug Metab Dispos, 2018, 46:970-979.
[11] Xiang Z, Li W, Wang L, et al. Identification of a NFκB inhibition site on the proximal promoter region of human organic anion transporting polypeptide 1A2 coding gene SLCO1A2[J]. Drug Metab Dispos, 2018, 46:643-651.
[12] Deng J, Guo L, Wu B. Circadian regulation of hepatic cytochrome P4502a5 by peroxisome proliferator-activated receptor γ[J]. Drug Metab Dispos, 2018, 46:1538-1545.
[13] Guo L, Yu F, Zhang T, et al. The clock protein bmal1 regulates circadian expression and activity of sulfotransferase 1a1 in mice[J]. Drug Metab Dispos, 2018, 46:1403-1410.
[14] Zhang T, Yu F, Guo L, et al. Small heterodimer partner regulates circadian cytochromes P450 and drug-induced hepatotoxicity[J]. Theranostics, 2018, 8:5246-5258.
[15] Zhao M, Zhang T, Yu F, et al. E4bp4 regulates carboxylesterase 2 enzymes through repression of the nuclear receptor Rev-erbα in mice[J]. Biochem Pharmacol, 2018, 152:293-301.
[16] Wang S, Lin Y, Yuan X, et al. Rev-ERBα integrates colon clock with experimental colitis through regulation of NF-κB/NLRP3 axis[J]. Nat Commun, 2018, 9:4246.
[17] Zhang T, Zhao M, Lu D, et al. Rev-erbα regulates CYP7A1 through repression of liver receptor homolog-1[J]. Drug Metab Dispos, 2018, 46:248-258
[18] Zheng X, Liu Y, Yu Q, et al. Response to comment on "Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin"[J]. Sci Transl Med, 2017, 9 pii:eaam6298.
[19] Ye C, Han K, Lei J, et al. Inhibition of histone deacetylase 7 reverses concentrative nucleoside transporter 2 repression in colorectal cancer by up-regulating histone acetylation state[J]. Br J Pharmacol, 2018, 175:4209-4217.
[20] Cheng M, Cai W, Huang W, et al. Histone deacetylase 6 regulated expression of IL-8 is involved in the doxorubicin (Dox) resistance of osteosarcoma cells via modulating ABCB1 transcription[J]. Eur J Pharmacol, 2018, 840:1-8.
[21] Gao J, Wang Z, Wang GJ, et al. Higher CYP2E1 activity correlates with hepatocarcinogenesis induced by diethylnitrosamine[J]. J Pharmacol Exp Ther, 2018, 365:398-407.
[22] Gao J, Wang Z, Wang GJ, et al. From hepatofibrosis to hepatocarcinogenesis:higher cytochrome P4502E1 activity is a potential risk factor[J]. Mol Carcinog, 2018, 57:1371-1382.
[23] Gao N, Li J, Li MR, et al. Higher activity of alcohol dehydrogenase is correlated with hepatic fibrogenesis[J]. J Pharmacol Exp Ther, 2018, 367:473-482.
[24] Wang Y, Hu Y, Li P, et al. Expression and regulation of proton-coupled oligopeptide transporters in colonic tissue and immune cells of mice[J]. Biochem Pharmacol, 2018, 148:163-173.
[25] Song F, Hu Y, Wang Y, et al. Functional characterization of human peptide/histidine transporter 1 in stably transfected MDCK cells[J]. Mol Pharm, 2018, 15:385-393.
[26] Song F, Yi Y, Li C, et al. Regulation and biological role of the peptide/histidine transporter SLC15A3 in Toll-like receptor-mediated inflammatory responses in macrophage[J]. Cell Death Dis, 2018, 9:770.
[27] Zhou X, Zhao Y, Wang J, et al. Resveratrol represses estrogen-induced mammary carcinogenesis through NRF2-UGT1A8-estrogen metabolic axis activation[J]. Biochem Pharmacol, 2018, 155:252-263.
[28] Sun J, Wen Y, Zhou Y, et al. P53 attenuates acetaminophen-induced hepatotoxicity by regulating drug-metabolizing enzymes and transporter expression[J]. Cell Death Dis, 2018, 9:536-547.
[29] Zhao H, Li S, Yang Z, et al. Identification of ketene-reactive intermediate of erlotinib possibly responsible for inactivation of P450 enzymes[J]. Drug Metab Dispos, 2018, 46:442-450.
[30] Gao XJ, Li T, Wei B, et al. Bacterial outer membrane vesicles from dextran sulfate sodium-induced colitis differentially regulate intestinal UDP-Glucuronosyltransferase 1A1 partially through toll-like receptor 4/mitogen-activated protein kinase/phosphatidylinositol 3-kinase pathway[J]. Drug Metab Dispos, 2018, 46:292-302.
[31] Feng R, Zhao ZX, Ma SR, et al. Gut microbiota-regulated pharmacokinetics of berberine and active metabolites in beagle dogs after oral administration[J]. Front Pharmacol, 2018, 9:214.
[32] Zhao ZX, Fu J, Ma SR, et al. Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin[J]. Theranostics, 2018, 8:5945-5959.
[33] Shen H, Gao XJ, Li T, et al. Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism[J]. J Ethnopharmacol, 2018, 216:47-56.
[34] Li H, Xiao J, Li X, et al. Low cerebral exposure cannot hinder the neuroprotective effects of Panax notoginsenosides[J]. Drug Metab Dispos, 2018, 46:53-65.
[35] Gao J, Qiao HL. Research progress in the content and activity of cytochrome P450 in human liver[J]. Prog Pharm Sci (药学进展), 2018, 42:611-620.
[36] Fang Y, Gao J, Wang T, et al. Intra-individual variation and correlation of cytochrome P450 activities in human liver microsomes[J]. Mol Pharm, 2018, 15:5312-5318.
[37] Xu C, Gao J, Zhang HF, et al. Content and activities of UGT2B7 in human liver in vitro and predicted in vivo:a bottom-up approach[J]. Drug Metab Dispos, 2018, 46:1351-1359.
[38] Zang X, Wang G, Cai Q, et al. A promising microtubule inhibitor deoxypodophyllotoxin exhibits better efficacy to multidrug-resistant breast cancer than paclitaxel via avoiding efflux transport[J]. Drug Metab Dispos, 2018; 46:542-551.
[39] Zhang Z, Guo X, To KKW, et al. Olmutinib (HM61713) reversed multidrug resistance by inhibiting the activity of ATP-binding cassette subfamily G member 2 in vitro and in vivo[J]. Acta Pharm Sin B, 2018, 8:563-574.
[40] Yang N, Li S, Yan C, et al. Inhibitory effects of endogenous linoleic acid and glutaric acid on the renal glucuronidation of berberrubine in mice and on recombinant human UGT1A7, 1A8, and 1A9[J]. Mol Pharmacol, 2018, 93:216-227.
[41] Yang X, Li W, Wang X, et al. Difference in internal exposure made infant mice more susceptible to hepatotoxicity of retrorsine than adult mice[J]. Chem Res Toxicol, 2018, 31:1348-1355.
[42] Li X, Yang X, Xiang E, et al. Maternal-fetal disposition and metabolism of retrorsine in pregnant rats[J]. Drug Metab Dispos, 2018, 46:422-428.
[43] Lu Y, Ma J, Song Z, et al. The role of formation of pyrrole-ATP synthase subunit beta adduct in pyrrolizidine alkaloid-induced hepatotoxicity[J]. Arch Toxicol, 2018, 92:3403-3414.
[44] Hu Z, Li W, Lin D, et al. Development of polyclonal antibodies for detection of diosbulbin B derived cis-enedial protein adducts[J]. Chem Res Toxicol, 2018, 31:231-237.
[45] Qin X, Peng Y, Zheng J. In vitro and in vivo studies of the electrophilicity of physcion and its oxidative metabolites[J]. Chem Res Toxicol, 2018, 31:340-349.
[46] Mao X, Hu Z, Wang Q, et al. Nitidine chloride is a mechanism-based inactivator of CYP2D6[J]. Drug Metab Dispos, 2018, 46:1137-1145.
[47] Zhang N, Cheng C, Olaleye OE, et al. Pharmacokinetics-based identification of potential therapeutic phthalides from Xuebijing, a Chinese herbal injection used in sepsis management[J]. Drug Metab Dispos, 2018, 46:823-834.
[48] Tian X, Wang C, Dong P, et al. Arenobufagin is a novel isoform-specific probe for sensing human sulfotransferase 2A1[J]. Acta Pharm Sin B, 2018, 8:784-794.
[49] Wei Y, Yang L, Zhang X, et al. Generation and characterization of a CYP2C11-null rat model by using the CRISPR/Cas9 method[J]. Drug Metab Dispos, 2018, 46:525-531.
[50] Chen Y, Zhao K, Liu F, et al. Predicting antitumor effect of deoxypodophyllotoxin in nci-h460 tumor-bearing mice on the basis of in vitro pharmacodynamics and a physiologically based pharmacokinetic-pharmacodynamic model[J]. Drug Metab Dispos, 2018, 46:897-907.
[51] Nakano M, Nakajima M. Current knowledge of microRNA-mediated regulation of drug metabolism in humans[J]. Expert Opin Drug Metab Toxicol, 2018, 14:493-504.
[52] Karlgren M, Simoff I, Keiser M, et al. CRISPR-Cas9:A new addition to the drug metabolism and disposition tool box[J]. Drug Metab Dispos, 2018, 46:1776-1786.
[53] Naritomi Y, Sanoh S, Ohta S. Chimeric mice with humanized liver:application in drug metabolism and pharmacokinetics studies for drug discovery[J]. Drug Metab Pharmacokinet, 2018, 33:31-39.
[54] Meseguer-Ripolles J, Khetani SR, Blanco JG, et al. Pluripotent stem cell-derived human tissue:platforms to evaluate drug metabolism and safety[J]. AAPS J, 2017, 20:20.
[55] Gu X, Xiao Q, Ruan Q, et al. Comparative untargeted proteomic analysis of ADME proteins and tumor antigens for tumor cell lines[J]. Acta Pharm Sin B, 2018, 8:252-260.
[56] Liu Y, Zheng X, Yu Q, et al. Epigenetic activation of the drug transporter OCT2 sensitizes renal cell carcinoma to oxaliplatin[J]. Sci Transl Med, 2016, 8:348ra97.
[57] Yu Q, Liu Y, Zheng X, et al. Histone H3 lysine 4 trimethylation, lysine 27 trimethylation, and lysine 27 acetylation contribute to the transcriptional repression of solute carrier family 47 member 2 in renal cell carcinoma[J]. Drug Metab Dispos, 2017, 45:109-117.
[58] Zhou X, Cao L, Jiang C, et al. PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis[J]. Nat Commun, 2014, 5:4573.
[59] Lin G, Wang JY, Li N, et al. Hepatic sinusoidal obstruction syndrome associated with consumption of Gynura segetum[J]. J Hepatol, 2011, 54:666-673.
[60] Dai ZR, Ge GB, Feng L, et al. A highly selective ratiometric two-photon fluorescent probe for human cytochrome P4501A[J]. J Am Chem Soc, 2015, 137:14488-14495.
[61] Lv X, Feng L, Ai CZ, et al. A practical and high-affinity fluorescent probe for uridine diphosphate glucuronosyltransferase 1A1:a good surrogate for bilirubin[J]. J Med Chem, 2017, 60:9664-9675.
[62] Wang D, Zou L, Jin Q, et al. Human carboxylesterases:a comprehensive review[J]. Acta Pharm Sin B, 2018, 8:699-712.
[63] National Natural Science Foundation of China. 2019 NSFC Project Guide (2019年国家自然科学基金指南)[R]. Beijing:Science Press, 2019:73.
[64] National Natural Science Foundation of China. 2018 NSFC Project Guide (2018年国家自然科学基金指南)[R]. Beijing:Science Press, 2018:114-115.
相关文献:
1.乔一杰, 辛元尧, 周雪姣, 杨梦, 李向阳.辐射影响药物代谢的研究进展[J]. 药学学报, 2017,52(6): 871-878
2.张峰, 秦雪梅, 杜冠华, 高晓霞.抗抑郁药物的体内代谢研究进展[J]. 药学学报, 2017,52(12): 1791-1800
3.周权, 余露山, 曾苏.基于药物代谢酶和转运体基因组学的药物精准治疗[J]. 药学学报, 2017,52(1): 1-7
4.杨波, 王静, 丛宇婷, 胡良海, 顾景凯.基于蛋白质组学的药物代谢酶与转运体定量分析研究进展[J]. 药学学报, 2015,50(6): 668-674
5.张娟玲, 李向阳.高原低氧影响药物代谢的研究进展[J]. 药学学报, 2015,50(9): 1073-1079
6.肖文璟, 王广基, 阿基业.肿瘤细胞中药物代谢酶表达和活性的研究与进展[J]. 药学学报, 2014,49(10): 1377-1386
7.胡冰芳 毕惠嫦 黄民.孕烷X受体及组成性雄甾烷受体的研究新进展[J]. 药学学报, 2011,46(10): 1173-1177
8.龙超峰;张远;楼雅卿.利福平及异烟肼对家兔体内地西泮药代动力学的影响[J]. 药学学报, 1997,32(7): 481-484
9.傅柳松;彭仁琇.苯巴比妥诱导下大鼠肝微粒体药酶活性与膜流动性变化的相关性[J]. 药学学报, 1991,26(8): 567-571