药学学报, 2019, 54(6): 991-999
引用本文:
任燊红, 毛自敏, 孔毅. 凝血因子XI抑制剂研究进展[J]. 药学学报, 2019, 54(6): 991-999.
REN Shen-hong, MAO Zi-min, KONG Yi. Research progress on the inhibitors against factor XI[J]. Acta Pharmaceutica Sinica, 2019, 54(6): 991-999.

凝血因子XI抑制剂研究进展
任燊红, 毛自敏, 孔毅
中国药科大学生命科学与技术学院, 江苏 南京 211198
摘要:
近十几年来血栓性疾病发病率上升,严重危害人类的健康。目前临床使用的抗血栓药物存在易出血等不良反应。大量临床资料表明,先天缺乏凝血因子XI(factor XI,FXI)的患者患缺血性脑卒中及深静脉血栓的比率明显降低,且一般无自发性出血。由于FXI的这一特点,对新抗凝方案探索的目光聚焦到了FXI抑制剂的开发上。以FXI为靶点的抗血栓新药研究已取得一定进展。本文就FXI抑制剂的研究进展做一综述,以期为研究新的抗血栓药物提供思路。
关键词:    血栓性疾病      抗血栓药物      凝血因子XI      抑制剂      出血风险     
Research progress on the inhibitors against factor XI
REN Shen-hong, MAO Zi-min, KONG Yi
School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
Abstract:
The incidence of thrombotic diseases has increased in the past decade, a factor endangering human health. Currently, antithrombotic drugs used in the clinic have side effects such as inducing bleeding. Data from clinical observation indicate that congenital deficiency of factor XI (FXI) gene decreases the incidence of stroke and deep venous thrombosis, without causing spontaneous bleeding. This unique property of FXI makes it a potential new target for antithrombotic drugs development. Many studies have focused on the discovery of novel inhibitors targeting FXI. This review summarizes the research progress in searching for the inhibitors against FXI.
Key words:    thrombotic disease    antithrombotic drug    factor XI    inhibitor    bleeding   
收稿日期: 2019-03-02
DOI: 10.16438/j.0513-4870.2019-0148
通讯作者: 孔毅
Email: yikong@cpu.edu.cn
相关功能
PDF(455KB) Free
打印本文
0
作者相关文章
任燊红  在本刊中的所有文章
毛自敏  在本刊中的所有文章
孔毅  在本刊中的所有文章

参考文献:
[1] Chen WW, Gao RL, Liu LS, et al. Summary of China cardiovascular disease report 2017[J]. Chin Circ J (中国循环杂志), 2017, 33:1-8.
[2] Mega JL, Simon T. Pharmacology of antithrombotic drugs:an assessment of oral antiplatelet and anticoagulant treatments[J]. Lancet, 2015, 386:281-291.
[3] Zhu H, Lv YJ, Han XW, et al. Comparison of structural characteristics and anticoagulation activity of enoxaparin sodium with different degree of 1,6-anhydro derivatives[J]. Acta Pharm Sin (药学学报), 2014, 49:1049-1053.
[4] Ali MR, Salim Hossain M, Islam MA, et al. Aspect of thrombolytic therapy:a review[J]. ScientificWorldJournal, 2014, 2014:586510.
[5] Balamuthusamy S, Arora R. Hematologic adverse effects of clopidogrel[J]. Am J Ther, 2007, 14:106-112.
[6] Elcioglu OC, Ozkok A, Akpinar TS, et al. Severe thrombocytopenia and alveolar hemorrhage represent two types of bleeding tendency during tirofiban treatment:case report and literature review[J]. Int J Hematol, 2012, 96:370-375.
[7] Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation:a meta-analysis of randomised trials[J]. Lancet, 2014, 383:955-962.
[8] Steiner T,Weitz JI, Veltkamp R. Anticoagulant-associated intracranial hemorrhage in the era of reversal agents[J]. Stroke, 2017, 48:1432-1437.
[9] Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation[J]. N Engl J Med, 2009, 361:1139-1151.
[10] Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation[J]. N Engl J Med, 2011, 365:883-891.
[11] Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation[J]. N Engl J Med, 2011, 365:981-992.
[12] Rosenthal RL, Dreskin OH, Rosenthal N. New hemophilia-like disease caused by a third plasma thromboplastin factor[J]. Proc Soc Exp Biol Med, 1953, 82:171-174.
[13] Seligsohn U. Factor XI deficiency in humans[J]. J Thromb Haemost, 2009, 7 Suppl 1:84-87.
[14] Renne T, Oschatz C, Seifert S, et al. Factor XI deficiency in animal models[J]. J Thromb Haemost, 2009, 7 Suppl 1:79-83.
[15] Wang X, Cheng Q, Xu L, et al. Effects of factor IX or factor XI deficiency on ferric chloride-induced carotid artery occlusion in mice[J]. J Thromb Haemost, 2005, 3:695-702.
[16] Salomon O, Steinberg DM, Koren-Morag N, et al. Reduced incidence of ischemic stroke in patients with severe factor XI deficiency[J]. Blood, 2008, 111:4113-4117.
[17] Meijers JC, Tekelenburg WL, Bouma BN, et al. High levels of coagulation factor XI as a risk factor for venous thrombosis[J]. N Engl J Med, 2000, 342:696-701.
[18] Osterud B, Bouma BN, Griffin JH. Human blood coagulation factor XI, purification, properties, and mechanism of activation by activated factor XⅡ[J]. J Biol Chem, 1977, 252:6432-6437.
[19] Fujikawa K, Chung DW, Hendrickson LE, et al. Amino acid sequence of human factor XI, a blood coagulation factor with four tandem repeats that are highly homologous with plasma prekallikrein[J]. Biochemistry, 1986, 25:2417-2424.
[20] Papagrigoriou E, McEwan PA, Walsh PN, et al. Crystal structure of the factor XI zymogen reveals a pathway for transactivation[J]. Nat Struct Mol Biol, 2006, 13:557-558.
[21] McMullen BA, Fujikawa K, Davie EW. Location of the disulfide bonds in human coagulation factor XI:the presence of tandem apple domains[J]. Biochemistry, 1991, 30:2056-2060.
[22] Gailani D, Smith SB. Structural and functional features of factor XI[J]. J Thromb Haemost, 2009, 7:75-78.
[23] Emsley J, McEwan PA, Gailani D. Structure and function of factor XI[J]. Blood, 2010, 115:2569-2577.
[24] Macfarlane RG. An enzyme cascade in the blood eclotting mechanism, and its function as a biochemical amplifier[J]. Nature, 1964, 202:498-499.
[25] Schumacher WA, Luettgen JM, Quan ML, et al. Inhibition of factor XIa as a new approach to anticoagulation[J]. Arterioscler Thromb Vasc Biol, 2010, 30:388-392.
[26] Long AT, Kenne E, Jung R, et al. Contact system revisited:an interface between inflammation, coagulation, and innate immunity[J]. J Thromb Haemost, 2016, 14:427-437.
[27] Fredenburgh JC, Gross PL,Weitz JI. Emerging anticoagulant strategies[J]. Blood, 2017, 129:147-154.
[28] Puy C, Rigg RA, McCarty OJ. The hemostatic role of factor XI[J]. Thromb Res, 2016, 141:S8-S11.
[29] Geng Y, Verhamme IM, Smith SB, et al. The dimeric structure of factor XI and zymogen activation[J]. Blood, 2013, 121:3962-3969.
[30] Choi SH, Smith SA, Morrissey JH. Polyphosphate is a cofactor for the activation of factor XI by thrombin[J]. Blood, 2011, 118:6963-6970.
[31] Chen YH, Liu D, Peng LF. Research progress of coagulation factor XI as a new target of anti-thrombotic therapy[J]. Chin Pharmacol Bull (中国药理学通报), 2015, 31:619-622.
[32] Weitz JI. Factor XI and factor XⅡ as targets for new anticoagulants[J]. Thromb Res, 2016, 141:S40-S45.
[33] Büller HR, Bethune C, Bhanot S, et al. Factor XI antisense oligonucleotide for prevention of venous thrombosis[J]. N Engl J Med, 2015, 372:232-340.
[34] Zhang H, Lowenberg EC, Crosby JR, et al. Inhibition of the intrinsic coagulation pathway factor XI by antisense oligonucleotides:a novel antithrombotic strategy with lowered bleeding risk[J]. Blood, 2010, 116:4684-4692.
[35] Crosby JR, Marzec U, Revenko AS, et al. Antithrombotic effect of antisense factor XI oligonucleotide treatment in primates[J]. Arterioscler Thromb Vasc Biol, 2013, 33:1670-1678.
[36] Wong PC, Crain EJ, Watson CA, et al. A small-molecule factor XIa inhibitor produces antithrombotic efficacy with minimal bleeding time prolongation in rabbits[J]. J Thromb Thrombolysis, 2011, 32:129-137.
[37] Al-Horani RA, Desai UR. Designing allosteric inhibitors of factor XIa. Lessons from the interactions of sulfated pentagalloylglucopyranosides[J]. J Med Chem, 2014, 57:4805-4818.
[38] Al-Horani RA, Ponnusamy P, Mehta AY, et al. Sulfated pentagalloylglucoside is a potent, allosteric, and selective inhibitor of factor XIa[J]. J Med Chem, 2013, 56:867-878.
[39] Deng H, Bannister TD, Jin L, et al. Synthesis, SAR exploration, and X-ray crystal structures of factor XIa inhibitors containing an alpha-ketothiazole arginine[J]. Bioorg Med Chem Lett, 2006, 16:3049-3054.
[40] Quan ML, Wong PC, Wang C, et al. Tetrahydroquinoline derivatives as potent and selective factor XIa inhibitors[J]. J Med Chem, 2014, 57:955-969.
[41] Tucker EI, Marzec UM, White TC, et al. Prevention of vascular graft occlusion and thrombus-associated thrombin generation by inhibition of factor XI[J]. Blood, 2009, 113:936-944.
[42] Cheng Q, Tucker EI, Pine MS, et al. A role for factor XⅡa-mediated factor XI activation in thrombus formation in vivo[J]. Blood, 2010, 116:3981-3989.
[43] Bennett CF, Swayze EE. RNA targeting therapeutics:molecular mechanisms of antisense oligonucleotides as a therapeutic platform[J]. Annu Rev Pharmacol Toxicol, 2010, 50:259-293.
[44] Younis HS, Crosby J, Huh JI, et al. Antisense inhibition of coagulation factor XI prolongs APTT without increased bleeding risk in cynomolgus monkeys[J]. Blood, 2012, 119:2401-2408.
[45] Yau JW, Liao P, Fredenburgh JC, et al. Selective depletion of factor XI or factor XⅡ with antisense oligonucleotides attenuates catheter thrombosis in rabbits[J]. Blood, 2014, 123:2102-2107.
[46] van Montfoort ML, Kuijpers MJ, Knaup VL, et al. Factor XI regulates pathological thrombus formation on acutely ruptured atherosclerotic plaques[J]. Arterioscler Thromb Vasc Biol, 2014, 34:1668-1673.
[47] Quan ML, Pinto DJP, Smallheer JM, et al. Factor XIa inhibitors as new anticoagulants[J]. J Med Chem, 2018, 61:7425-7447.
[48] Lin J, Deng HF, Jin L, et al. Design, synthesis, and biological evaluation of peptidomimetic inhibitors of factor XIa as novel anticoagulants[J]. J Med Chem, 2006, 49:7781-7791.
[49] Schumacher WA, Seiler SE, Steinbacher TE, et al. Antithrombotic and hemostatic effects of a small molecule factor XIa inhibitor in rats[J]. Eur J Pharmacol, 2007, 570:167-174.
[50] Buchanan MS, Carroll AR, Wessling D, et al. Clavatadine A, a natural product with selective recognition and irreversible inhibition of factor XIa[J]. J Med Chem, 2008, 51:3583-3587.
[51] Argade MD, Mehta AY, Sarkar A, et al. Allosteric inhibition of human factor XIa:discovery of monosulfated benzofurans as a class of promising inhibitors[J]. J Med Chem, 2014, 57:3559-3569.
[52] Wang L, Yang H, Zhao LH, et al. Research progress in small molecular inhibitors of coagulation factor XIa[J]. Prog Pharm Sci (药学进展), 2018, 42:62-68.
[53] Pinto DJP, Orwat MJ, Smith LM, et al. Discovery of a parenteral small molecule coagulation factor XIa inhibitor clinical candidate (BMS-962212)[J]. J Med Chem, 2017, 60:9703-9723.
[54] Perera V, Luettgen JM, Wang Z, et al. First-in-human study to assess the safety, pharmacokinetics and pharmacodynamics of BMS-962212, a direct, reversible, small molecule factor XIa inhibitor in non-Japanese and Japanese healthy subjects[J]. Br J Clin Pharmacol, 2018, 84:876-887.
[55] Corte JR, Fang T, Osuna H, et al. Structure-based design of macrocyclic factor XIa inhibitors:discovery of the macrocyclic amide linker[J]. J Med Chem, 2017, 60:1060-1075.
[56] Gruber A, Hanson SR. Factor XI-dependence of surface-and tissue factor-initiated thrombus propagation in primates[J]. Blood, 2003, 102:953-955.
[57] Yamashita A, Nishihira K, Kitazawa T, et al. Factor XI contributes to thrombus propagation on injured neointima of the rabbit iliac artery[J]. J Thromb Haemost, 2006, 4:1496-1501.
[58] David T, Kim YC, Ely LK, et al. Factor XIa-specific IgG and a reversal agent to probe factor XI function in thrombosis and hemostasis[J]. Sci Transl Med, 2016, 8:353ra112.
[59] van Montfoort ML, Knaup VL, Marquart JA, et al. Two novel inhibitory anti-human factor XI antibodies prevent cessation of blood flow in a murine venous thrombosis model[J]. Thromb Haemost, 2013, 110:1065-1073.
[60] Tillman BF, Gruber A, McCarty OJT, et al. Plasma contact factors as therapeutic targets[J]. Blood Rev, 2018, 32:433-448.
[61] Ma D, Mizurini DM, Assumpcao TC, et al. Desmolaris, a novel factor XIa anticoagulant from the salivary gland of the vampire bat (Desmodus rotundus) inhibits inflammation and thrombosis in vivo[J]. Blood, 2013, 122:4094-4106.
[62] Chen W, Carvalho LP, Chan MY, et al. Fasxiator, a novel factor XIa inhibitor from snake venom, and its site-specific mutagenesis to improve potency and selectivity[J]. J Thromb Haemost, 2015, 13:248-261.
[63] Wu W, Li H, Navaneetham D, et al. The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis[J]. Blood, 2012, 120:671-677.
[64] Gan W, Deng L, Yang C, et al. An anticoagulant peptide from the human hookworm, Ancylostoma duodenale that inhibits coagulation factors Xa and XIa[J]. FEBS Lett, 2009, 583:1976-1980.
[65] Navaneetham D, Jin L, Pandey P, et al. Structural and mutational analyses of the molecular interactions between the catalytic domain of factor XIa and the Kunitz protease inhibitor domain of protease nexin 2[J]. J Biol Chem, 2005, 280:36165-36175.
[66] Navaneetham D, Sinha D, Walsh PN. Mechanisms and specificity of factor XIa and trypsin inhibition by protease nexin 2 and basic pancreatic trypsin inhibitor[J]. J Biochem, 2010, 148:467-479.
[67] Yu HW, Ye H. Coagulation factor XI——a new target for antithrombotic therapy[J]. Prac J Med Pharm (实用医药杂志), 2014, 31:170-172.
[68] Corral-Rodriguez MA, Macedo-Ribeiro S, Pereira PJ, et al. Leech-derived thrombin inhibitors:from structures to mechanisms to clinical applications[J]. J Med Chem, 2010, 53:3847-3861.
[69] Warkentin TE, Greinacher A, Koster A. Bivalirudin[J]. Thromb Haemost, 2008, 99:830-839.