药学学报, 2019, 54(6): 1010-1016
引用本文:
张盈盈, 陈丽青, 刘璇, 辛欣, 孟令玮, 金明姬, 高钟镐, 黄伟. 外泌体作为药物递送载体的研究进展[J]. 药学学报, 2019, 54(6): 1010-1016.
ZHANG Ying-ying, CHEN Li-qing, LIU Xuan, XIN Xin, MENG Ling-wei, JIN Ming-ji, GAO Zhong-gao, HUANG Wei. Advances in research on exosomes as drug delivery vehicles[J]. Acta Pharmaceutica Sinica, 2019, 54(6): 1010-1016.

外泌体作为药物递送载体的研究进展
张盈盈, 陈丽青, 刘璇, 辛欣, 孟令玮, 金明姬, 高钟镐, 黄伟
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050
摘要:
外泌体是由细胞主动向外分泌的膜性囊泡,可以从多种细胞的培养基及动物体液中分离得到。外泌体主要由脂质、蛋白质和遗传物质组成,直径介于40~100 nm之间,分子结构小,生物相容性高,可运输脂质、蛋白质、DNA及RNA等物质,是天然的内源性纳米载体。目前研究表明外泌体在远距离细胞间信息传递中起重要作用,涉及生理和病理过程。本文介绍了外泌体的组成及生理功能,详细总结了外泌体作为药物递送载体的相关内容,对外泌体在神经系统疾病尤其是脑部疾病及肿瘤等方面的应用进行了概述。
关键词:    外泌体      药物递送载体      纳米载体      肿瘤      靶向     
Advances in research on exosomes as drug delivery vehicles
ZHANG Ying-ying, CHEN Li-qing, LIU Xuan, XIN Xin, MENG Ling-wei, JIN Ming-ji, GAO Zhong-gao, HUANG Wei
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Exosomes are membranous vesicles that are actively secreted by cells. They can be isolated from various cell culture media and animal body fluids. Exosomes are mainly composed of lipids, proteins and nucleic acids. They have small molecular structure and high biocompatibility with size of 40-100 nm. In addition, exosomes are natural endogenous nanocarriers that can transport lipids, proteins, DNA and RNA. Studies have shown that exosomes play an important role in long-distance communication between cells, in physiological and pathological processes. This article introduces the composition and physiological functions of exosomes, and summarizes the relevant content of exosomes as drug delivery vehicles. The applications of exosomes in central nervous system diseases, especially brain diseases and tumors are summarized.
Key words:    exosome    drug delivery vehicle    nanocarrier    tumor    targeting   
收稿日期: 2018-12-13
DOI: 10.16438/j.0513-4870.2018-1118
基金项目: 中国医学科学院医学与健康科技创新工程重大协同创新项目(CAMS-2017-I2M-1-011).
通讯作者: 黄伟
Email: huangwei@imm.ac.cn
相关功能
PDF(414KB) Free
打印本文
0
作者相关文章
张盈盈  在本刊中的所有文章
陈丽青  在本刊中的所有文章
刘璇  在本刊中的所有文章
辛欣  在本刊中的所有文章
孟令玮  在本刊中的所有文章
金明姬  在本刊中的所有文章
高钟镐  在本刊中的所有文章
黄伟  在本刊中的所有文章

参考文献:
[1] Wang ZY, Zheng R, Ma MJ, et al. Exosomes applied as drug carrier and targeted drug delivery strategies[J]. Chin J Cell Biol (中国细胞生物学学报), 2017, 39:1118-1123.
[2] Zhu YL. Study on the Functionalization of Exosomes as Pharmaceutical Carrier (外泌体作为药物载体的功能化研究)[D]. Nanjing:Southeast University, 2017.
[3] Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes:current perspectives and future challenges[J]. Acta Pharm Sin B, 2016, 6:287-296.
[4] Li SD, Hou X, Qi HZ, et al. Exosomes:provide naturally occurring endogenous nanocarriers for effective drug delivery strategies[J]. Prog Chem (化学进展), 2016, 28:353-362.
[5] Wu Q, Yang GD, Wei MY, et al. Biological roles of exosome and its implication in gene therapy[J]. Prog Mod Biomed (现代生物医学进展), 2016, 16:6785-6788.
[6] Yuan P, Guo XC, Zhang JP, et al. Research progress of the exosomes as drug delivery vehicles of Chinese herbal drugs[J]. Acta Pharm Sin (药学学报), 2017, 52:1667-1672.
[7] Johnsen KB, Gudbergsson JM, Skov MN, et al. A comprehensive overview of exosomes as drug delivery vehicles-endogenous nanocarriers for targeted cancer therapy[J]. Biochim Biophys Acta, 2014, 1846:75-87.
[8] Conde-Vancells J, Rodriguez-Suarez E, Embade N, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes[J]. J Proteome Res, 2008, 7:5157-5166.
[9] Wu JE, Ding JT. Advances in research on biological functions and applications of exosomes[J]. Prog Veterinary Med (动物医学进展), 2016, 37:90-94.
[10] Wang J, Chen JY. Research progress of extracellular vesicles[J]. Chin J Tissue Eng Res (中国组织工程研究), 2017, 21:621-626.
[11] Liu YC. The Biological Function of Extracellular Vesicle and Its Utilization as Small RNA Carrier In Vivo (细胞外囊泡的生物学功能及其作为体内小核糖核酸药物递送载体的研究)[D]. Nanjing:Nanjing University, 2016.
[12] Wang YG, Wang SJ. The role of exosomes in the formation of microenvironment of immunosuppressive tumors[J]. Chin J Cell Mol Immunal (细胞与分子免疫学杂志), 2015, 31:1417-1420.
[13] Koumangoye RB, Sakwe AM, Goodwin JS, et al. Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading[J]. PLoS One, 2011, 6:e24234.
[14] Le MTN, Hamar P, Guo C, et al. miR-200-containing extracellular vesicles promote breast cancer cell metastasis[J]. J Clin Invest, 2014, 124:5109-5128.
[15] Bruno S, Collino F, Deregibus MC, et al. Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth[J]. Stem Cells Dev, 2012, 22:758-771.
[16] Andaloussi SEL, Lakhal S, Mäger I, et al. Exosomes for targeted siRNA delivery across biological barriers[J]. Adv Drug Deliv Rev, 2013, 65:391-397.
[17] Wahlgren J, Karlson TDL, Brisslert M, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes[J]. Nucleic Acids Res, 2012, 40:e130.
[18] Jiang XC, Gao JQ. Exosomes as novel bio-carriers for gene and drug delivery[J]. Int J Pharm, 2017, 521:167-175.
[19] Yeo RWY, Lai RC, Zhang B, et al. Mesenchymal stem cell:an efficient mass producer of exosomes for drug delivery[J]. Adv Drug Deliv Rev, 2013, 65:336-341.
[20] Zhang QJ, Di CX, Chen YH, et al. Research progress of exosomes in tumor cells and clinical application[J]. Modern Oncol (现代肿瘤医学), 2018, 26:945-950.
[21] Li X, Dang XT, Zeng XR. Exosome-mediated targeted therapeutic delivery and applications in cardiovascular diseases[J]. Chin J Biochem Mol Biol (中国生物化学与分子生物学报), 2016, 32:1286-1294.
[22] Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Control Release, 2015, 219:396-405.
[23] Lobb RJ, Becker M, Wen S, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma[J]. J Extracell Vesicl, 2015, 4:27031.
[24] Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes[J]. Methods, 2015, 87:3-10.
[25] Kalra H, Adda CG, Liem M, et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma[J]. Proteomics, 2013, 13:3354-3364.
[26] Bu H, He D, He X, et al. Exosomes:isolation, analysis, and applications in cancer detection and therapy[J]. ChemBioChem, 2018, 19:1-22
[27] Zarovni N, Corrado A, Guazzi P, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches[J]. Methods, 2015, 87:46-58.
[28] Muller L, Hong CS, Stolz DB, et al. Isolation of biologically-active exosomes from human plasma[J]. J Immunol Methods, 2014, 411:55-65.
[29] Yamashita T, Takahashi Y, Nishikawa M, et al. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation[J]. Eur J Pharm Biopharm, 2016, 98:1-8.
[30] Rood IM, Deegens JKJ, Merchant ML, et al. Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome[J]. Kidney Int, 2010, 78:810-816.
[31] Wang PP, Wang HH, Peng DY, et al. Comparison of different extraction methods of macrophage-derived exosomes[J]. Chin Pharm Bull (中国药理学通报), 2018, 34:589-592.
[32] Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors[J]. ACS Nano, 2013, 7:7698-7710.
[33] Wu JY, Ji AL, Wang Z, et al. Exosome-mimetic nanovesicles from hepatocytes promote hepatocyte proliferation in vitro and liver regeneration in vivo[J]. Sci Rep, 2018, 8:2471.
[34] Zhao JL, Wang YM, Niu YW, et al. Research progress of exosome used as drug delivery system[J]. Mater Guide (材料导报), 2017, 31:160-165.
[35] Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanomedicine, 2016, 12:655-664.
[36] Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy[J]. J Control Release, 2015, 207:18-30.
[37] Vader P, Mol EA, Pasterkamp G, et al. Extracellular vesicles for drug delivery[J]. Adv Drug Deliv Rev, 2016, 106:148-156.
[38] Hood JL, Scott MJ, Wickline SA. Maximizing exosome colloidal stability following electroporation[J]. Anal Biochem, 2014, 448:41-49.
[39] Lu M, Xing H, Xun Z, et al. Exosome-based small RNA delivery:progress and prospects[J]. Asian J Pharm Sci, 2018, 13:1-11.
[40] Alvarez-Erviti L, Seow Y, Yin HF, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nat Biotechnol, 2011, 29:341.
[41] Bihl J, Wang J, Ma X, et al. Exosome and miRNA in stroke//Cellular and Molecular Approaches to Regeneration and Repair[M]. Cham:Springer International Publishing, 2018:325-361.
[42] Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150:137-149.
[43] Wang S, Zhang ZH, Gu DF, et al. Advances of exosomes as a new drug delivery system[J]. J China Pharm Univ (中国药科大学学报), 2014, 45:247-252.
[44] Luan X, Sansanaphongpricha K, Myers I, et al. Engineering exosomes as refined biological nanoplatforms for drug delivery[J]. Acta Pharmacol Sin, 2017, 38:754-763.
[45] Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio[J]. Pharm Res, 2015, 32:2003-2014.
[46] Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells[J]. Mol Ther, 2013, 21:185-191.
[47] Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth[J]. Cancer Lett, 2013, 335:201-204.
[48] Pascucci L, Coccè V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth:a new approach for drug delivery[J]. J Control Release, 2014, 192:262-270.
[49] Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanomedicine, 2016, 12:655-664.
[50] Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases[J]. Int Biochem Cell biol, 2009, 41:40-59.
[51] Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system:the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes[J]. Mol Ther, 2010, 18:1606-1614.
[52] Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review[J]. J Control Release, 2000, 65:271-284.
[53] Ju S, Mu J, Dokland T, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis[J]. Mol Ther, 2013, 21:1345-1357.
[54] Armstrong JPK, Holme MN, Stevens MM. Re-engineering extracellular vesicles as smart nanoscale therapeutics[J]. ACS Nano, 2017, 11:69-83.
[55] Nakase I, Futaki S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes[J]. Sci Rep, 2015, 5:10112.
相关文献:
1.张如月, 周玉冰, 杨哲, 郭金秀, 李朵璐.外泌体介导的肿瘤化疗耐药研究进展[J]. 药学学报, 2019,54(4): 594-600
2.陈风飞, 李欣欣, 孙立, 马晓慧, 袁胜涛.肿瘤微环境及相关靶向药的研究进展[J]. 药学学报, 2018,53(5): 676-683
3.刘薇, 陈丽青, 辛欣, 黄伟, 高钟镐.抗肿瘤抗生素药物制剂的研究进展[J]. 药学学报, 2018,53(6): 865-877
4.李梦茹, 李腾, 莫然.胰腺癌靶向纳米递药系统的研究进展[J]. 药学学报, 2018,53(7): 1090-1099
5.周丹丹, 余娇娇, 花芳, 胡卓伟.巨噬细胞迁移抑制因子,连接炎症和肿瘤的关键蛋白[J]. 药学学报, 2018,53(11): 1761-1769
6.贾学丽, 张佳, 赵婷, 杜青, 曹德英, 向柏, 耿革霞, 齐宪荣.低pH插入肽研究概况[J]. 药学学报, 2018,53(3): 375-382
7.刘爱赟, 侯晓双, 丁娅.基于线粒体靶向机制的抗肿瘤制剂的研究进展[J]. 药学学报, 2017,52(6): 879-887
8.袁鹏, 郭晓辰, 张军平, 吕仕超, 朱亚萍.外泌体作为中药载体的研究进展[J]. 药学学报, 2017,52(11): 1667-1672
9.段迎超, 翟晓雨, 秦文平, 关圆圆.基于PROTACs策略的抗肿瘤药物研究进展[J]. 药学学报, 2017,52(12): 1801-1810
10.李曼, 杨玉婷, 何勤, 张志荣.纳米载体在肿瘤免疫治疗中的研究进展[J]. 药学学报, 2017,52(12): 1839-1848
11.蒋家豪, 孙福谋, 韩月, 王阳, 蔡佳玲, 王旻, 张娟.噬菌体展示全人源抗GPC3的单链抗体的筛选及鉴定[J]. 药学学报, 2017,52(12): 1877-1883
12.罗林明, 楚世峰, 姜懿纳, 罗飘, 陈乃宏.神经干细胞治疗胶质瘤的研究进展[J]. 药学学报, 2017,52(4): 510-516
13.樊敦, 余敬谋, 黄皓, 金一.环境响应性递释系统在基因与药物共传递应用中的研究进展[J]. 药学学报, 2017,52(5): 713-721
14.王钰洁, 曹鑫, 刘小宇, 卢小玲, 李玉艳, 焦炳华.抗体偶联药物设计及临床研究进展[J]. 药学学报, 2016,51(8): 1209-1216
15.杨怡君, 丁劲松.硝基咪唑类在肿瘤乏氧显像剂中的作用和研究进展[J]. 药学学报, 2016,51(8): 1227-1232
16.马银云, 李莉, 黄海凤, 缑三虎, 倪京满.肿瘤靶向型pH敏感多肽类药物递送系统研究进展[J]. 药学学报, 2016,51(5): 717-724
17.李聪, 许焕丽, 刘明, 林秀坤.诱导细胞凋亡的海洋抗肿瘤药物研究进展[J]. 药学学报, 2016,51(9): 1394-1400
18.马赫遥, 何苗, 魏敏杰.调控肿瘤干细胞干性的靶向作用与相关机制的研究进展[J]. 药学学报, 2016,51(2): 189-196
19.何琪杨.肿瘤异质性与抗肿瘤靶向药物的耐药性[J]. 药学学报, 2016,51(2): 197-201
20.韩旻, 李畅, 郭望葳, 刘惠娜, 梁文权, 高建青.线粒体靶向药物输送抗肿瘤的研究进展[J]. 药学学报, 2016,51(2): 257-263
21.邓春月, 龙莹莹, 刘厦, 陈章宝, 李翀.生物素介导的胰腺癌靶向聚合物胶束制备及其用于光动力治疗的初步研究[J]. 药学学报, 2015,50(8): 1038-1044
22.胡宏祥, 王学清, 张华, 张强.分子靶向抗肿瘤药物的作用机制及临床研究进展[J]. 药学学报, 2015,50(10): 1232-1239
23.李伟男, 徐琪, 王艳宏, 陈大为.聚(β-氨基酯)肿瘤靶向给药系统的研究进展[J]. 药学学报, 2015,50(4): 434-439
24.张利, 魏刚, 陆伟跃.可活化细胞穿膜肽在肿瘤治疗领域的应用[J]. 药学学报, 2014,49(12): 1639-1643
25.赵 波, 范俣辰, 王学清, 代文兵, 张 强, 王杏林.iRGD修饰的阿霉素主动靶向脂质体的细胞毒与抗肿瘤效果评价[J]. 药学学报, 2013,48(3): 417-422
26.乔明曦, 张晓君, 巴 爽, 胡海洋, 赵秀丽, 陈大为.肿瘤干细胞靶向给药系统的研究进展[J]. 药学学报, 2013,48(4): 477-483
27.陈伟光, 王士斌.纳米载体共载基因与化疗药物用于癌症治疗的研究进展[J]. 药学学报, 2013,48(7): 1091-1098
28.张添源, 胡瑜兰, 梁文权, 高建青.基因重组间充质干细胞作为肿瘤靶向细胞载体的研究进展[J]. 药学学报, 2013,48(8): 1209-1220
29.邱立朋, 龙苗苗, 陈大为.透明质酸肿瘤靶向给药系统的研究进展[J]. 药学学报, 2013,48(9): 1376-1382
30.邱立朋, 龙苗苗, 陈大为.透明质酸肿瘤靶向给药系统的研究进展[J]. 药学学报, 2013,48(9): 1376-1382
31.周雅梅,吴学萍,曾理,张雅溶,潘黎军,王 驰 .肽修饰的甲氨蝶呤体外抗肿瘤作用初步研究[J]. 药学学报, 2012,47(4): 452-458
32.涂柳晓,徐月红,汤晨懿,邓礼荷,吴传斌.RGD环肽介导的靶向脂质体体内药动学及荷瘤动物活体成像研究[J]. 药学学报, 2012,47(5): 646-651
33.黄榕彬, 唐国涛.酸敏释药胶束肿瘤靶向给药系统的研究进展[J]. 药学学报, 2012,47(4): 440-445
34.汤 沁, 丁 倩, 林 莉, 张珍珍, 代 争, 詹金彪.针对HER2靶点的抗体药物研究与肿瘤靶向治疗[J]. 药学学报, 2012,47(10): 1297-1305
35.陈 军.抗肿瘤热敏靶向脂质体的研究进展[J]. 药学学报, 2011,46(5): 502-506
36.赵 杰 曹胜利 郑晓霖 赵 波.叶酸受体介导的抗肿瘤药物研究进展[J]. 药学学报, 2009,44(2): 109-114
37.刘洋 张振中 李坤 梅芊.载反义寡核苷酸阳离子脂质体的制备及体内外研究[J]. 药学学报, 2009,44(11): 1273-1277
38.赵惟;马会利;齐宪荣.靶向肿瘤新生血管的阿霉素阳离子脂质体的体外研究[J]. 药学学报, 2007,42(9): 982-988
39.辛胜昌1;2;吴新荣1;2;周丽珍2.紫杉醇磁性脂质体纳米粒的制备[J]. 药学学报, 2006,41(10): 933-938
40.张奇;项光亚;龙娜;林佳亮;曾凡波.叶酸靶向的PGA联合N-苯乙酰化阿霉素的抗肿瘤活性[J]. 药学学报, 2005,40(11): 1046-1050
41.王维刚;甄永苏.以抗体为基础的肿瘤靶向治疗和基因治疗[J]. 药学学报, 1999,34(10): 795-800