药学学报, 2019, 54(6): 1017-1025
引用本文:
张佳, 赵婷, 敦洁宁, 孙明贤, 黄荣荣, 向柏, 白靖, 曹德英. 门控型药物递送系统研究进展[J]. 药学学报, 2019, 54(6): 1017-1025.
ZHANG Jia, ZHAO Ting, DUN Jie-ning, SUN Ming-xian, HUANG Rong-rong, XIANG Bai, BAI Jing, CAO De-ying. Research progress of drug delivery system with “gatekeeper”[J]. Acta Pharmaceutica Sinica, 2019, 54(6): 1017-1025.

门控型药物递送系统研究进展
张佳1, 赵婷1, 敦洁宁1, 孙明贤1, 黄荣荣1, 向柏1, 白靖2, 曹德英1
1. 河北医科大学药学院, 河北 石家庄 050017;
2. 河北医科大学第四医院药学部, 河北 石家庄 050011
摘要:
门控型药物递送系统,旨在通过门控基团使药物在正常生理条件下处于稳定包载状态。而在肿瘤等病变微环境或外源性因素刺激下,门控基团脱落或改变实现药物的响应性释放。本文主要针对刺激响应性连接臂和刺激响应性基团两个方面的应用,综述了近10年门控型药物递送系统的研究进展。
关键词:    门控      药物递送系统      微环境      刺激响应      肿瘤治疗     
Research progress of drug delivery system with “gatekeeper”
ZHANG Jia1, ZHAO Ting1, DUN Jie-ning1, SUN Ming-xian1, HUANG Rong-rong1, XIANG Bai1, BAI Jing2, CAO De-ying1
1. School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China;
2. Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
Abstract:
The drug delivery system with "gatekeeper" is designed to achieve a stable entrapment state of the payload under normal physiological conditions through the gatekeepers. With tumor microenvironment or stimulation of exogenous factors, the gatekeeper is detached or altered to promote the responsive release of the drug. In this paper, we focus on applications of stimuli-responsive linkages and stimuli-responsive groups, and review research progresses of drug delivery system with "gatekeeper" developed over the past 10 years.
Key words:    gatekeeper    drug delivery system    microenvironment    stimuli-responsive    tumor therapy   
收稿日期: 2019-02-22
DOI: 10.16438/j.0513-4870.2019-0134
基金项目: 国家自然科学基金资助项目(81773666,81302725);河北省自然科学基金资助项目(H2018206052);河北省卫生厅2017年“医学科学研究重点课题计划”(20170768).
通讯作者: 向柏, 白靖
Email: baixiang@hebmu.edu.cn;baijing619@163.com
相关功能
PDF(650KB) Free
打印本文
0
作者相关文章
张佳  在本刊中的所有文章
赵婷  在本刊中的所有文章
敦洁宁  在本刊中的所有文章
孙明贤  在本刊中的所有文章
黄荣荣  在本刊中的所有文章
向柏  在本刊中的所有文章
白靖  在本刊中的所有文章
曹德英  在本刊中的所有文章

参考文献:
[1] Tseng YJ, Chou SW, Shyue JJ, et al. A versatile theranostic delivery platform integrating magnetic resonance imaging/computed tomography, pH/cis-diol controlled release, and targeted therapy[J]. ACS Nano, 2016, 10:5809-5822.
[2] Cui Y, Dong H, Cai X, et al. Mesoporous silica nanoparticles capped with disulfide-linked PEG gatekeepers for glutathione-mediated controlled release[J]. ACS Appl Mater Interfaces, 2012, 4:3177-3183.
[3] Zhao Q, Wang S, Yang Y, et al. Hyaluronic acid and carbon dots-gated hollow mesoporous silica for redox and enzyme-triggered targeted drug delivery and bioimaging[J]. Mater Sci Eng C, 2017, 78:475-484.
[4] Chen X, Sun H, Hu J, et al. Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery[J]. Colloids Surf B Biointerfaces, 2017, 152:77-84.
[5] Neaime C, Amela-Cortes M, Grasset F, et al. Time-gated luminescence bioimaging with new luminescent nanocolloids based on[Mo6I8(C2F5COO)6]2- metal atom clusters[J]. Phys Chem Chem Phys, 2016, 18:30166-30173.
[6] Lin JT, Liu ZK, Zhu QL, et al. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles[J]. Colloids Surf B Biointerfaces, 2017, 155:41-50.
[7] Zhang M, Wang W, Wu F, et al. Black phosphorus quantum dots gated, carbon-coated Fe3O4 nanocapsules (BPQDs@SS-Fe3O4@C) with low premature release could enable imaging-guided cancer combination therapy[J]. Chemistry, 2018, 24:12890-12901.
[8] Zhang B, Luo Z, Liu J, et al. Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo[J]. J Control Release, 2014, 192:192-201.
[9] Giménez C, de la Torre C, Gorbe M, et al. Gated mesoporous silica nanoparticles for the controlled delivery of drugs in cancer cells[J]. Langmuir, 2015, 31:3753-3762.
[10] Cheng X, Li D, Lin A, et al. Fabrication of multifunctional triple-responsive platform based on CuS-capped periodic mesoporous organosilica nanoparticles for chemo-photothermal therapy[J]. Int J Nanomedicine, 2018, 13:3661-3677.
[11] An N, Lin H, Yang C, et al. Gated magnetic mesoporous silica nanoparticles for intracellular enzyme-triggered drug delivery[J]. Mater Sci Eng C, 2016, 69:292-300.
[12] Saroj S, Rajput SJ. Tailor-made pH-sensitive polyacrylic acid functionalized mesoporous silica nanoparticles for efficient and controlled delivery of anti-cancer drug etoposide[J]. Drug Dev Ind Pharm, 2018, 44:1198-1211.
[13] Hakeem A, Zahid F, Zhan G, et al. Polyaspartic acid-anchored mesoporous silica nanoparticles for pH-responsive doxorubicin release[J]. Int J Nanomedicine, 2018, 13:1029-1040.
[14] Zhang M, Liu J, Kuang Y, et al. Ingenious pH-sensitive dextran/mesoporous silica nanoparticles based drug delivery systems for controlled intracellular drug release[J]. Int J Biol Macromol, 2017, 98:691-700.
[15] Gan Q, Lu X, Yuan Y, et al. A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica[J]. Biomaterials, 2011, 32:1932-1942.
[16] Chen Y, Ai K, Liu J, et al. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging[J]. Biomaterials, 2015, 60:111-120.
[17] Hu JJ, Lei Q, Peng MY, et al. A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem[J]. Biomaterials, 2017, 128:136-146.
[18] Shi J, Chen Z, Wang B, et al. Reactive oxygen species-manipulated drug release from a smart envelope-type mesoporous titanium nanovehicle for tumor sonodynamic-chemotherapy[J]. ACS Appl Mater Inter, 2015, 7:28554-28565.
[19] Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression[J]. Nat Rev Cancer, 2002, 2:161-174.
[20] Qiu L, Zhang W, Wang S, et al. Construction of multifunctional porous silica nanocarriers for pH/enzyme-responsive drug release[J]. Mater Sci Eng C, 2017, 81:485-491.
[21] de la Torre C, Mondragón L, Coll C, et al. Cathepsin-B induced controlled release from peptide-capped mesoporous silica nanoparticles[J]. Chemistry, 2014, 20:15309-15314.
[22] Lee J, Oh ET, Yoon H, et al. Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia[J]. Nanoscale, 2017, 9:6901-6909.
[23] Chen Y, Zhang F, Wang Q, et al. Near-infrared light-mediated LA-UCNPs@SiO2-C/HA@mSiO2-DOX@NB nanocomposite for chemotherapy/PDT/PTT and imaging[J]. Dalton Trans, 2017, 46:14293-14300.
[24] Zong L, Yuan AR, Zhu Y, et al. Preparation of thermoresponsive micelles loaded with indocyanine green and doxorubicin for combined therapy in MCF-7 cells[J]. Acta Pharm Sin (药学学报), 2018, 53:1169-1176.
[25] Lei Q, Qiu WX, Hu JJ, et al. Multifunctional mesoporous silica nanoparticles with thermal-responsive gatekeeper for NIR light-triggered chemo/photothermal-therapy[J]. Small, 2016, 12:4286-4298.
[26] Liu J, Liu XX, Yuan Y, et al. Supramolecular modular approach toward conveniently constructing and multifunctioning a pH/redox dual responsive drug delivery nanoplatform for improved cancer chemotherapy[J]. ACS Appl Mater Interfaces, 2018, 10:26473-26484.
[27] Feng Q, Zhang W, Li Y, et al. An intelligent NIR-responsive chelate copper-based anticancer nanoplatform for synergistic tumor targeted chemo-phototherapy[J]. Nanoscale, 2017, 9:15685-15695.
[28] Feng L, Gai S, He F, et al. Multifunctional mesoporous ZrO2 encapsulated upconversion nanoparticles for mild NIR light activated synergistic cancer therapy[J]. Biomaterials, 2017, 147:39-52.
[29] An J, Yang XQ, Cheng K, et al. In vivo computed tomography/photoacoustic imaging and NIR-triggered chemo-photothermal combined therapy based on a gold nanostar-, mesoporous silica-, and thermosensitive liposome-composited nanoprobe[J]. ACS Appl Mater Interfaces, 2017, 9:41748-41759.
[30] Lee J, Oh E, Han Y, et al. Mesoporous silica nanocarriers with cyclic peptide gatekeeper:specific targeting of aminopeptidase N and triggered drug release by stimuli-responsive conformational transformation[J]. Chemistry, 2017, 23:16966-16971.
[31] Lee J, Oh E, Song J, et al. Stimulus-induced conformational transformation of a cyclic peptide for selective cell targeting on-off gatekeeper of mesoporous nanocarrier[J]. Chem Asian J, 2017, 12:2813-2818.
[32] Wang Q, Gao Z, Liu S, et al. Hybrid polymeric micelles based on bioactive polypeptides as pH-responsive delivery systems against melanoma[J]. Biomaterials, 2014, 35:7008-7021.
[33] Li WP, Liao PY, Su CH, et al. Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform[J]. J Am Chem Soc, 2014, 136:10062-10075.
[34] Li Z, Zhang J, Guo X, et al. Multi-functional magnetic nanoparticles as an effective drug carrier for the controlled anti-tumor treatment[J]. J Biomater Appl, 2018, 32:967-976.
[35] Banerjee S, Sen K, Pal TK, et al. Poly(styrene-co-maleic acid)-based pH-sensitive liposomes mediate cytosolic delivery of drugs for enhanced cancer chemotherapy[J]. Int J Pharm, 2012, 436:786-797.
[36] Yuan Q, Zhang Y, Chen T, et al. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid[J]. ACS Nano, 2012, 6:6337-6344.
[37] Hou B, Yang W, Dong C, et al. Controlled co-release of doxorubicin and reactive oxygen species for synergistic therapy by NIR remote-triggered nanoimpellers[J]. Mater Sci Eng C, 2017, 74:94-102.
[38] Singh P, Choudhury S, Kulanthaivel S, et al. Photo-triggered destabilization of nanoscopic vehicles by dihydroindolizine for enhanced anticancer drug delivery in cervical carcinoma[J]. Colloids Surf B Biointerfaces, 2018, 162:202-211.
[39] Liu C, Zhang Y, Liu M, et al. A NIR-controlled cage mimicking system for hydrophobic drug mediated cancer therapy[J]. Biomaterials, 2017, 139:151-162.
[40] Das RK, Pramanik A, Majhi M, et al. Magnetic mesoporous silica gated with doped carbon dot for site-specific drug delivery, fluorescence, and MR imaging[J]. Langmuir, 2018, 34:5253-5262.
[41] Liu X, Shou D, Chen C, et al. Core-shell structured polypyrrole/mesoporous SiO2 nanocomposite capped with graphene quantum dots as gatekeeper for irradiation-controlled release of methotrexate[J]. Mater Sci Eng C, 2017, 81:206-212.
[42] Zhu CL, Lu CH, Song XY, et al. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate[J]. J Am Chem Soc, 2011, 133:1278-1281.
[43] Lu HY, Chang YJ, Fan NC, et al. Synergism through combination of chemotherapy and oxidative stress-induced autophagy in A549 lung cancer cells using redox-responsive nanohybrids:a new strategy for cancer therapy[J]. Biomaterials, 2015, 42:30-41.
[44] Sinha A, Chakraborty A, Jana NR. Dextran-gated, multifunctional mesoporous nanoparticle for glucose-responsive and targeted drug delivery[J]. ACS Appl Mater Interfaces, 2014, 6:22183-22191.
[45] Wang Y, Song S, Liu J, et al. ZnO-functionalized upconverting nanotheranostic agent:multimodality imaging-guided chemotherapy with on-demand drug release triggered by pH[J]. Angew Chem Int Ed Engl, 2015, 54:536-540.
[46] Liu MC, Liu B, Chen XL, et al. Calcium carbonate end-capped, folate-mediated Fe3O4@mSiO2 core-shell nanocarriers as targeted controlled-release drug delivery system[J]. J Biomater Appl, 2018, 32:1090-1104.
[47] Cheng Y, Jiao X, Xu T, et al. Free-blockage mesoporous anticancer nanoparticles based on ROS-responsive wetting behavior of nanopores[J]. Small, 2017, 13:1701942.
[48] Liu Q, Chen X, Jia J, et al. pH-responsive poly(D,L-lactic-co-glycolic acid) nanoparticles with rapid antigen release behavior promote immune response[J]. ACS Nano, 2015, 9:4925-4938.