药学学报, 2019, 54(6): 1132-1140
引用本文:
贾鑫磊, 何贝轩, 郭丹丹, 高越, 郭美丽. 红花花冠伸长相关基因CtXTH1的特征与功能研究[J]. 药学学报, 2019, 54(6): 1132-1140.
JIA Xin-lei, HE Bei-xuan, GUO Dan-dan, GAO Yue, GUO Mei-li. The characteristics and functions of CtXTH1: the gene boosts the corolla elongation in safflower[J]. Acta Pharmaceutica Sinica, 2019, 54(6): 1132-1140.

红花花冠伸长相关基因CtXTH1的特征与功能研究
贾鑫磊1,2, 何贝轩2, 郭丹丹2, 高越2, 郭美丽1,2
1. 福建中医药大学药学院, 福建 福州 350122;
2. 海军军医大学药学院, 上海 200433
摘要:
本研究从红花花冠转录组数据库筛选出13个木葡聚糖内切转葡糖基/水解酶基因(XTHs)和8个膨胀素基因(EXPs)。通过花冠表达谱芯片数据和花冠长度的相关分析和qRT-PCR确认,筛选出可能与花冠伸长相关的4个XTHs和1个EXPr ≥ 0.60),分别为CtXTH1CtXTH2CtXTH3CtXTH4CtEXP1。采用RACE法克隆了这5个基因的全长序列,生物信息学分析发现CtXTH1可能与花冠发育有关,表达模式分析发现其在花中特异性积累。通过构建红花过表达重组载体(pMT39-CtXTH1)进行遗传转化发现,CtXTH1的过表达可以显著增加红花花冠长度(约5.34%~10.25%)和花冠重量(约30.00%~36.02%),同时,过表达植株种子重量、每果球小花数和种子数均有增大的趋势,而对花冠中的主要黄酮类成分的含量没有显著影响。对花冠显微结构观察发现,过表达植株在花冠管状部分表现出更松散和不规则的特征,提示CtXTH1可能有助于增加组织的松弛从而促进花冠伸长。本研究为高产红花品种的选育提供重要的参考价值。
关键词:    红花      CtXTH1      花冠伸长      转基因     
The characteristics and functions of CtXTH1: the gene boosts the corolla elongation in safflower
JIA Xin-lei1,2, HE Bei-xuan2, GUO Dan-dan2, GAO Yue2, GUO Mei-li1,2
1. Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
2. Pharmacy College, Second Military Medical University, Shanghai 200433, China
Abstract:
In this study, 13 xyloglucan endotransglycosylases/hydrolases (XTHs) and 8 expansin (EXPs) were screened from safflower floret transcriptome database. Through correlation analysis between the safflower gene expression profile chip and the corolla development, only 4 XTHs (CtXTH1-4) and 1 EXP (CtEXP1) have positive relevance with corolla elongation (r ≥ 0.60) and were therefore validated by qRT-PCR. The full length of these genes were cloned by RACE. According to the bioinformatic analysis, CtXTH1 correlated with the development of the floret, and the expression pattern analysis indicated that CtXTH1 had accumulated in the floret. The recombinant vector (pMT39-CtXTH1) was constructed for gene transformation. Overexpression of CtXTH1 significantly increased the corolla length (about 5.34% to 10.25%) and corolla weight (about 30.00% to 36.02%) in transgenic safflower. The overexpression lines also showed an increasing tendency in the weight of seeds, average number of corollas per cone and average number of seeds in each cone. Meanwhile, overexpression of CtXTH1 had no significant effect on flavonoids. According to the corolla microstructure, the OVX-line tubular part of floret exhibited a looser and irregular character. These data suggested that CtXTH1 can potentially increase relaxation of the tissues and boost corolla elongation. Our study provides a valuable clue for plant breeding in the future.
Key words:    safflower    CtXTH1    corolla length    transgenic   
收稿日期: 2019-02-25
DOI: 10.16438/j.0513-4870.2019-0130
基金项目: 国家自然科学基金资助项目(81473300,81173484);上海市自然基金资助项目(13ZR1448200);“863”国家高技术发展计划(2008AA02Z137).
通讯作者: 高越, 郭美丽
Email: mlguo@126.com;gaoyue2000@hotmail.com
相关功能
PDF(830KB) Free
打印本文
0
作者相关文章
贾鑫磊  在本刊中的所有文章
何贝轩  在本刊中的所有文章
郭丹丹  在本刊中的所有文章
高越  在本刊中的所有文章
郭美丽  在本刊中的所有文章

参考文献:
[1] Asgarpanah J, Kazemivash N. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L.[J]. Chin J Integr Med, 2013, 19:153-159.
[2] Delshad E, Yousefi M, Sasannezhad P, et al. Medical uses of Carthamus tinctorius L. (safflower):a comprehensive review from traditional medicine to modern medicine[J]. Electron Physician, 2018, 10:6672-6681.
[3] Gecgel U, Demirci M, Esendal E, et al. Fatty acid composition of the oil from developing seeds of different varieties of safflower (Carthamus tinctorius L.)[J]. J Am Oil Chem Soc, 2007, 84:47-54.
[4] Tian ZM. The current situation, development advantages and countermeasures of Chinese safflower industry[J]. Yunnan Agric Sci Technol (云南农业科技), 2014, (4):57-59.
[5] Lee J, Burns T, Light G, et al. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation[J]. Planta, 2010, 232:1191-1205.
[6] Shao MY, Wang XD, Ni M, et al. Regulation of cotton fiber elongation by xyloglucan endotransglycosylase/hydrolase genes[J]. Gen Mol Res, 2011, 10:3771-3782.
[7] Li XB, Zhang JZ. Chemical structure and physiological function of hemicellulose[J]. Chin Bull Bot (植物学报), 1994, 11:27-33.
[8] Ferreira SDS, Hotta C, Poelking VGDC, et al. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane[J]. Plant Mol Biol, 2016, 91:15-35.
[9] Gruber M, Alahakoon A, Taheri A, et al. The biochemical composition and transcriptome of cotyledons from Brassica napus L. lines expressing the AtGL3 transcription factor and exhibiting reduced flea beetle feeding[J]. BMC Plant Biol, 2018, 18:64-65.
[10] Cosgrove DJ. New genes and new biological roles for expansins[J]. Curr Opin Plant Biol, 2000, 3:73-78.
[11] Fry SC. Polysaccharide-modifying enzymes in the plant cell wall[J]. Ann Rev Plant Biol, 2003, 46:497-520.
[12] Zenoni S, Reale L, Tornielli GB, et al. Downregulation of the Petunia hybrida V. alpha-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs[J]. Plant Cell, 2004, 16:295-308.
[13] Harada T, Torii Y, Morita S, et al. Cloning, characterization and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening[J]. J Exp Bot, 2011, 62:815-823.
[14] Li XB, Xu WW, Chowdhury MR, et al. Comparative proteomic analysis of labellum and inner lateral petals in Cymbidium ensifolium flowers[J]. Int J Mol Sci, 2014, 15:19877-19897.
[15] Li Z, Xia WS, Hong R, et al. Cloning and functional verification of chrysanthemum CmXTHs genes related to petal elongation[J]. Acta Hort Sin (园艺学报), 2017, 11:2150-2162.
[16] Guo DD, Xue YR, Li DQ, et al. Overexpression of CtCHS1 increases accumulation of quinochalcone in safflower[J]. Front Plant Sci, 2017, 8:1409.
[17] Liu F. Cloning and Functional Verification of Key Enzyme Genes in the Biosynthesis Pathway of Safflower Flavonoids (红花黄酮类化合物生物合成途径关键酶基因的克隆与功能验证)[D]. Shanghai:The Second Military Medical University (第二军医大学), 2014.
[18] Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods[J]. Mol Biol Evol, 2011, 28:2731-2739.
[19] Kelley LA, Mezulis S, Yates CM, et al. The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nat Protoc, 2015, 10:845-858.
[20] He BX, Xue YR, Tu YH, et al. CtCHS4 induces the accumulation of safflower quinone chalcones in response to methyl jasmonate induction[J]. Acta Pharm Sin (药学学报), 2018, 53:636-645.
[21] Baumann MJ, Eklf JM, Michel G, et al. Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases:biological implications for cell wall metabolism[J]. Plant Cell, 2007, 19:1947-1963.
[22] Yokoyama R, Nishitani K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of arabidopsis[J]. Plant Cell Physiol, 2001, 42:1025-1033.
[23] Becnel J, Natarajan M, Kipp A, et al. Developmental expression patterns of arabidopsis XTH genes reported by transgenes and genevestigator[J]. Plant Mol Biol, 2006, 61:451-467
[24] Keijzer CJ. The process of anther dehiscence and pollen dispersal. Part Ⅱ[J]. New Phytol, 1987, 3:499-507.
[25] Sanders PM, Bui AQ, Weterings K, et al. Anther developmental defects in Arabidopsis thaliana male-sterile mutants[J]. Sex Plant Reprod, 1999, 11:297-322.
[26] Lee Y, Choi D, Kende H. Expansins:ever-expanding numbers and functions[J]. Curr Opin Plant Biol, 2001, 4:527-532.
[27] Yan A, Wu MJ, Yan LM, et al. AtEXP2 is involved in seed germination and abiotic stress response in arabidopsis[J]. PLoS One, 2014, 9:e85208.
[28] Nardi CF, Villarreal N, Rossi F, et al. Overexpression of the carbohydrate binding module of strawberry expansin in Arabidopsis thaliana modifies plant growth and cell wall metabolism[J]. Plant Mol Biol, 2015, 88:101-117.
[29] Mayer K, Schller C, Wambutt R, et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana[J]. Nature, 1999, 402:769-777.
[30] Carey RE, Hepler N, Cosgrove DJ. Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes[J]. BMC Plant Biol, 2013, 13:4.
[31] Yokoyama R, Rose JKC, Nishitani K. A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice classification and expression analysis[J]. Plant Physiol, 2004, 134:1088-1099.
[32] Sampedro J, Cosgrove DJ. The expansin superfamily[J]. Gen Biol, 2005, 6:242-253.
[33] Kaku T, Tabuchi A, Wakabayashi K, et al. Xyloglucan oligosaccharides cause cell wall loosening by enhancing xyloglucan endotransglucosylase/hydrolase activity in azuki bean epicotyls[J]. Plant Cell Physiol, 2004, 45:77-82.
[34] Miedes E, Zarra I, Hoson T, et al. Xyloglucan endotransglucosylase and cell wall extensibility[J]. J Plant Physiol, 2011, 168:196-203.
[35] Maris A, Suslov D, Fry SC, et al. Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of arabidopsis and their effect on root growth and cell wall extension[J]. J Exp Bot, 2009, 60:3959-3972.
[36] Soltys-Kalina D, Rudzińska-Langwald A, Gniazdowska A, et al. Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression[J]. Planta, 2012, 236:1629-1638.
[37] Xu P, Cai XT, Wang Y, et al. HDG11 upregulates cell-wall-loosening protein genes to promote root elongation in arabidopsis[J]. J Exp Bot, 2014, 65:4285-4295.
[38] Choi D, Lee Y, Cho HT, et al. Regulation of expansin gene expression affects growth and development in transgenic rice plants[J]. Plant Cell, 2003, 15:1386-1398.
[39] Matsui A, Yokoyama R, Seki M, et al. AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements[J]. Plant J, 2005, 42:525-534.
[40] Han Y, Han SK, Ban QY, et al. Overexpression of persimmon DkXTH1 enhanced tolerance to abiotic stress and delayed fruit softening in transgenic plants[J]. Plant Cell Rep, 2017, 36:583-596.
[41] Bae JM, Kwak MS, Noh SA, et al. Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in arabidopsis[J]. Transgenic Res, 2014, 23:657-667.
[42] Li WC, Wu JY, Zhang HN, et al. De novo assembly and characterization of pericarp transcriptome and identification of candidate genes mediating fruit cracking in Litchi chinensis Sonn[J]. Int J Mol Sci, 2014, 15:17667-17685.
[43] Zhang ZY, Wang N, Jiang SH, et al. Analysis of the xyloglucan endotransglucosylase/hydrolase gene family during apple fruit ripening and softening[J]. J Agric Food Chem, 2017, 65:429-434.
[44] Olsen S, Popper Z, Krause K. Two sides of the same coin:xyloglucan endotransglucosylases/hydrolases in host infection by the parasitic plant cuscuta[J]. Plant Signal Behav, 2016, 11:e1145336.
[45] Olsen S, Striberny B, Hollmann J, et al. Getting ready for host invasion:elevated expression and action of xyloglucan endotransglucosylases/hydrolases in developing haustoria of the holoparasitic angiosperm cuscuta[J]. J Exp Bot, 2015, 258:193-204.
[46] Shin YK, Yum H, Kim ES, et al. BcXTH1, a brassica campestris homologue of arabidopsis XTH9, is associated with cell expansion[J]. Planta, 2005, 224:32-41.
[47] Han Y, Ban QY, Li H, et al. DkXTH8, a novel xyloglucan endotransglucosylase/hydrolase in persimmon, alters cell wall structure and promotes leaf senescence and fruit postharvest softening[J]. Sci Rep, 2016, 6:39155-39170.