药学学报, 2019, 54(7): 1145-1156
引用本文:
王磊, 姜正羽, 尤启冬. 2018年首创性小分子药物研究实例浅析[J]. 药学学报, 2019, 54(7): 1145-1156.
WANG Lei, JIANG Zheng-yu, YOU Qi-dong. First-in-class small molecule drugs in 2018[J]. Acta Pharmaceutica Sinica, 2019, 54(7): 1145-1156.

2018年首创性小分子药物研究实例浅析
王磊1,2, 姜正羽1,2, 尤启冬1,2
1. 中国药科大学江苏省药物分子设计与成药性优化重点实验室, 江苏 南京 210009;
2. 中国药科大学药学院药物化学系, 江苏 南京 210009
摘要:
首创性(first-in-class)药物是使用全新的、独特的作用机制或靶向于某个全新的候选靶标来治疗某种疾病的药物,其研发理念和过程不同于跟随性药物(me too,me better)。2018年,美国食品药品监督管理局(FDA)共批准上市了59个全新药物,打破了1993年批准53个新药的历史记录。获批的新药中,小分子药物以64%占据较大比例。在获批的34个小分子新药中,有9个是首创性的小分子药物,这对后续的药物研发具有里程碑式的重要意义。其中包括全球首个作用于Hedgehog信号通路的Smo小分子抑制剂格拉德吉;首个靶向于突变型IDH1的小分子抑制剂艾伏尼布;首个抗天花病毒的p37蛋白小分子抑制剂替韦立马;首个靶向于cap-依赖型核酸内切酶的抗流感药物玛巴洛沙韦;首个靶向于GnRH-R治疗子宫内膜异位症的小分子药物艾拉戈克钠等。首创性的药物研发往往需要经历非常坎坷的研发过程,而成功的首创性药物多数也都成为重磅炸弹级的明星药物。本文选取2018年批准的具有代表性的首创性小分子药物研究实例,浅析其研发过程,为更多首创药物的研发提供研究借鉴及研发思路。
关键词:    首创性药物      小分子药物      新药研发     
First-in-class small molecule drugs in 2018
WANG Lei1,2, JIANG Zheng-yu1,2, YOU Qi-dong1,2
1. Jiangsu Key Laboratory of Drug Design and Optimization, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
2. Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
Abstract:
In 2018, FDA approved 59 kinds of new drugs in all, breaking the record of 53 set in 1993. There were 34 types of small molecule drugs, which accounted for 64% of the whole new drugs. Of these 34 new small molecule drugs, 9 first-in-class ones marked a milestone for the subsequent drug discovery and development. These include Glasdegib, the world's first small molecule inhibitor targeting Smo through Hedgehog signaling pathway; Ivosidenib, the first small molecule inhibitor targeting mutant IDH1; Tecovirimat, the first small molecule drug for anti-variola virus therapy through targeting p37; Baloxavir marboxil, the first anti-flu drug targeting cap-dependent endonuclease; Elagolix sodium, the first small molecule inhibitor in treating endometriosis by targeting GnRH-R, etc. The research and development of first-in-class drugs is always full of obstacles and challenges. However, once they were successfully recognized as the "heavy bomb" drugs, they would become huge benefits. This article chose the representative first-in-class small molecule drugs that were approved in 2018 as examples to analyze their development processes in an attempt to provide guidance for the research and development of more first-in-class drugs.
Key words:    first-in-class drug    small-molecule drug    drug development   
收稿日期: 2019-05-07
DOI: 10.16438/j.0513-4870.2019-0356
通讯作者: 尤启冬,Tel:86-25-83271351,E-mail:youqidong@gmail.com
Email: youqidong@gmail.com
相关功能
PDF(1910KB) Free
打印本文
0
作者相关文章
王磊  在本刊中的所有文章
姜正羽  在本刊中的所有文章
尤启冬  在本刊中的所有文章

参考文献:
[1] Guo Z. Concise analysis for innovation of pioneering and follow-on drugs[J]. Acta Pharm Sin (药学学报), 2016, 51:1179-1184.
[2] Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events[J]. N Engl J Med, 2007, 357:2109-2122.
[3] Forrest MJ, Bloomfield D, Briscoe RJ, et al. Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone[J]. Br J Pharmacol, 2008, 154:1465-1473.
[4] Mello MM,Messing NA. Restrictions on the use of prescribing data for drug promotion[J]. N Engl J Med, 2011, 365:1248-1254.
[5] Oberholzer-Gee FInamdar SN. Merck's recall of rofecoxib——a strategic perspective[J]. N Engl J Med, 2004, 351:2147-2149.
[6] Rubin LL, de Sauvage FJ. Targeting the Hedgehog pathway in cancer[J]. Nat Rev Drug Discov, 2006, 5:1026-1033.
[7] Heretsch P, Tzagkaroulaki L, Giannis A. Modulators of the Hedgehog signaling pathway[J]. Bioorg Med Chem, 2010, 18:6613-6624.
[8] Peukert S, Miller-Moslin K. Small-molecule inhibitors of the Hedgehog signaling pathway as cancer therapeutics[J]. ChemMedChem, 2010, 5:500-512.
[9] Taipale J, Chen JK, Cooper MK, et al. Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine[J]. Nature, 2000, 406:1005-1009.
[10] Jiang J, Hui CC. Hedgehog signaling in development and cancer[J]. Dev Cell, 2008, 15:801-812.
[11] Doggrell SA. The hedgehog pathway inhibitor GDC-0449 shows potential in skin and other cancers[J]. Expert Opin Investig Drugs, 2010, 19:451-454.
[12] Palermo R, Ghirga F, Piccioni MG, et al. Natural products inspired modulators of cancer stem cells-specific signaling pathways Notch and Hedgehog[J]. Curr Pharm Des, 2018, 24:4251-4269.
[13] Frank-Kamenetsky M, Zhang XM, Bottega S, et al. Small-molecule modulators of hedgehog signaling:identification and characterization of smoothened agonists and antagonists[J]. J Biol, 2002, 1:10.
[14] Chen JK, Taipale J,Young KE, et al. Small molecule modulation of smoothened activity[J]. Proc Natl Acad Sci U S A, 2002, 99:14071-14076.
[15] Hughes JD, Blagg J, Price DA, et al. Physiochemical drug properties associated with in vivo toxicological outcomes[J]. Bioorg Med Chem Lett, 2008, 18:4872-4875.
[16] Munchhof MJ, Li Q, Shavnya A, et al. Discovery of PF-04449913, a potent and orally bioavailable inhibitor of smoothened[J]. ACS Med Chem Lett, 2012, 3:106-111.
[17] Xin M, Ji X, De La Cruz LK, et al. Strategies to target the Hedgehog signaling pathway for cancer therapy[J]. Med Res Rev, 2018, 38:870-913.
[18] Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication[J]. J Clin Oncol, 2010, 28:3636-3643.
[19] Reitman ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer:alterations at a crossroads of cellular metabolism[J]. J Natl Cancer Inst, 2010, 102:932-941.
[20] Dang L, White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate[J]. Nature, 2010, 465:966.
[21] Dang L, Su SM. Isocitrate dehydrogenase mutation and (R)-2-hydroxyglutarate:from basic discovery to therapeutics development[J]. Annu Rev Biochem, 2017, 86:305-331.
[22] Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18:553-567.
[23] Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation[J]. Nature, 2012, 483:474-478.
[24] Rohle D, Popovici-Muller J, Palaskas N, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells[J]. Science, 2013, 340:626-630.
[25] Popovici-Muller J, Saunders JO, Salituro FG, et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo[J]. ACS Med Chem Lett, 2012, 3:850-855.
[26] Popovici-Muller J, Lemieux RM, Artin E, et al. Discovery of AG-120(ivosidenib):a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers[J]. ACS Med Chem Lett, 2018, 9:300-305.
[27] Burgus R, Butcher M, Amoss M, et al. Primary structure of the ovine hypothalamic luteinizing hormone-releasing factor (LRF) (LH-hypothalamus-LRF-gas chromatography-mass spectrometry-decapeptide-Edman degradation)[J]. Proc Natl Acad Sci U S A, 1972, 69:278-282.
[28] Brostoff SW, Eylar EH. The proposed amino acid sequence of the P1 protein of rabbit sciatic nerve myelin[J]. Arch Biochem Biophys, 1972, 153:590-598.
[29] Conn PM, McArdle CA, Andrews WV, et al. The molecular basis of gonadotropin-releasing hormone (GnRH) action in the pituitary gonadotrope[J]. Biol Reprod, 1987, 36:17-35.
[30] Conn PM. The molecular basis of gonadotropin-releasing hormone action[J]. Endocr Rev, 1986, 7:3-10.
[31] Barbieri RL. Clinical applications of GnRH and its analogues[J]. Trends Endocrinol Metab, 1992, 3:30-34.
[32] Karten MJ, Rivier JE. Gonadotropin-releasing hormone analog design. Structure-function studies toward the development of agonists and antagonists:rationale and perspective[J]. Endocr Rev, 1986, 7:44-66.
[33] Huirne JA, Lambalk CB. Gonadotropin-releasing-hormone-receptor antagonists[J]. Lancet, 2001, 358:1793-1803.
[34] Betz SF, Zhu YF, Chen C, et al. Non-peptide gonadotropin-releasing hormone receptor antagonists[J]. J Med Chem, 2008, 51:3331-3348.
[35] Cho N, Harada M, Imaeda T, et al. Discovery of a novel, potent, and orally active nonpeptide antagonist of the human luteinizing hormone-releasing hormone (LHRH) receptor[J]. J Med Chem, 1998, 41:4190-4195.
[36] Hara T, Araki H, Kusaka M, et al. Suppression of a pituitary-ovarian axis by chronic oral administration of a novel nonpeptide gonadotropin-releasing hormone antagonist, TAK-013, in cynomolgus monkeys[J]. J Clin Endocrinol Metab, 2003, 88:1697-1704.
[37] Wilcoxen KM, Zhu YF, Connors PJ, et al. Synthesis and initial structure-activity relationships of a novel series of imidazolo[1,2-a]pyrimid-5-ones as potent GnRH receptor antagonists[J]. Bioorg Med Chem Lett, 2002, 12:2179-2183.
[38] Zhu YF, Struthers RS, Connors PJ, Jr., et al. Initial structure-activity relationship studies of a novel series of pyrrolo[1,2-a]pyrimid-7-ones as GnRH receptor antagonists[J]. Bioorg Med Chem Lett, 2002, 12:399-402.
[39] Zhu YF, Gross TD, Guo Z, et al. Identification of 1-arylmethyl-3-(2-aminoethyl)-5-aryluracil as novel gonadotropin-releasing hormone receptor antagonists[J]. J Med Chem, 2003, 46:2023-2026.
[40] Tucci FC, Zhu YF, Struthers RS, et al. 3-[(2R)-Amino-2-phenylethyl]-1-(2,6-difluorobenzyl)-5-(2-fluoro-3-methoxyphenyl)-6-methylpyrimidin-2,4-dione (NBI 42902) as a potent and orally active antagonist of the human gonadotropin-releasing hormone receptor. Design, synthesis, and in vitro and in vivo characterization[J]. J Med Chem, 2005, 48:1169-1178.
[41] Chen C, Chen Y, Pontillo J, et al. Potent and orally bioavailable zwitterion GnRH antagonists with low CYP3A4 inhibitory activity[J]. Bioorg Med Chem Lett, 2008, 18:3301-3305.
[42] Ekins S, Stresser DM, Williams JA. In vitro and pharmacophore insights into CYP3A enzymes[J]. Trends Pharmacol Sci, 2003, 24:161-166.
[43] Chen C, Wu D, Guo Z, et al. Discovery of sodium R-(+)-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyrate (elagolix), a potent and orally available nonpeptide antagonist of the human gonadotropin-releasing hormone receptor[J]. J Med Chem, 2008, 51:7478-7485.
[44] Bray M. Pathogenesis and potential antiviral therapy of complications of smallpox vaccination[J]. Antivir Res, 2003, 58:101-114.
[45] Redfield RR, Wright DC, James WD, et al. Disseminated vaccinia in a military recruit with human immunodeficiency virus (HIV) disease[J]. N Engl J Med, 1987, 316:673-676.
[46] Baker RO, Bray M, Huggins JW. Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections[J]. Antivir Res, 2003, 57:13-23.
[47] Kern ER. In vitro activity of potential anti-poxvirus agents[J]. Antivir Res, 2003, 57:35-40.
[48] Bronson JJ, Ferrara LM, Hitchcock MJ, et al. (S)-1-(3-Hydroxy-2-(phosphonylmethoxy)propyl) cytosine (HPMPC):a potent antiherpesvirus agent[J]. Adv Exp Med Biol, 1990, 278:277-283.
[49] Lalezari JP, Stagg RJ, Kuppermann BD, et al. Intravenous cidofovir for peripheral cytomegalovirus retinitis in patients with AIDS. A randomized, controlled trial[J]. Ann Intern Med, 1997, 126:257-263.
[50] De Clercq E, Sakuma T, Baba M, et al. Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines[J]. Antivir Res, 1987, 8:261-272.
[51] de Oliveira CB, Stevenson D, LaBree L, et al. Evaluation of Cidofovir (HPMPC, GS-504) against adenovirus type 5 infection in vitro and in a New Zealand rabbit ocular model[J]. Antivir Res, 1996, 31:165-172.
[52] Snoeck R, Bossens M, Parent D, et al. Phase Ⅱ double-blind, placebo-controlled study of the safety and efficacy of cidofovir topical gel for the treatment of patients with human papillomavirus infection[J]. Clin Infect Dis, 2001, 33:597-602.
[53] Neyts J, De Clercq E. Efficacy of (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine for the treatment of lethal vaccinia virus infections in severe combined immune deficiency (SCID) mice[J]. J Med Virol, 1993, 41:242-246.
[54] LeDuc JW, Damon I, Relman DA, et al. Smallpox research activities:U.S. interagency collaboration, 2001[J]. Emerg Infect Dis, 2002, 8:743-745.
[55] Bailey TR, Rippin SR, Opsitnick E, et al. N-(3,3a,4,4a,5,5a,6,6a-Octahydro-1,3-dioxo-4,6-ethenocycloprop[f]isoindol-2-(1H)-yl)carboxamides:identification of novel orthopoxvirus egress inhibitors[J]. J Med Chem, 2007, 50:1442-1444.
[56] Yang G, Pevear DC, Davies MH, et al. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus challenge[J]. J Virol, 2005, 79:13139-13149.
[57] Heo DS, Park JG, Hata K, et al. Evaluation of tetrazolium-based semiautomatic colorimetric assay for measurement of human antitumor cytotoxicity[J]. Cancer Res, 1990, 50:3681-3690.
[58] Grosenbach DW, Hruby DE. Analysis of a vaccinia virus mutant expressing a nonpalmitylated form of p37, a mediator of virion envelopment[J]. J Virol, 1998, 72:5108-5120.
[59] Husain M, Moss B. Similarities in the induction of post-Golgi vesicles by the vaccinia virus F13L protein and phospholipase D[J]. J Virol, 2002, 76:7777-7789.
[60] Husain M, Weisberg A, Moss B. Topology of epitope-tagged F13L protein, a major membrane component of extracellular vaccinia virions[J]. Virology, 2003, 308:233-242.