药学学报, 2019, 54(7): 1157-1165
周云丰, 陶雪, 王丽莎, 张梦荻, 王智, 刘新民, 常琪. 嗅球切除动物模型的特点和应用研究进展[J]. 药学学报, 2019, 54(7): 1157-1165.
ZHOU Yun-feng, TAO Xue, WANG Li-sha, ZHANG Meng-di, WANG Zhi, LIU Xin-min, CHANG Qi. Progress in characteristics and application of olfactory bulbectomy animal model[J]. Acta Pharmaceutica Sinica, 2019, 54(7): 1157-1165.

周云丰, 陶雪, 王丽莎, 张梦荻, 王智, 刘新民, 常琪
中国医学科学院、北京协和医学院药用植物研究所, 北京 100193
啮齿类动物双侧嗅球切除(olfactory bulbectomy,OBX)后产生一系列行为学和神经生化改变,这些改变能够模拟抑郁症患者的部分临床表现,慢性给予抗抑郁药能够逆转这些变化,急性给药无效。OBX模型有较好的表观效度、结构效度和预测效度,被广泛应用于抑郁症发病机制的研究和抗抑郁药物的筛选。此外,OBX模型与阿尔茨海默症(Alzheimer's disease,AD)在行为学和病理改变方面有一些共同表现,如学习记忆能力的降低和β-淀粉样蛋白(amyloid-β protein,Aβ)的沉积等。本文对嗅觉与抑郁和AD的关系、OBX模型的建立方法和行为学特点、皮层和海马结构和生化的改变以及该模型在抑郁和AD中的应用进行介绍,为该模型更好地应用于抗抑郁及抗AD药物的研发提供参考。
关键词:    嗅球切除      动物模型      行为学特点      神经生化      抑郁      阿尔茨海默症     
Progress in characteristics and application of olfactory bulbectomy animal model
ZHOU Yun-feng, TAO Xue, WANG Li-sha, ZHANG Meng-di, WANG Zhi, LIU Xin-min, CHANG Qi
Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
In rodents, bilateral olfactory bulbectomy (OBX) results in a series of changes in behaviors and neurobiology, similar to the clinical symptoms of depression in patients. These changes can be reversed by chronic but not acute treatment of antidepressants. Owing to the face, construct and predictive validities, the OBX model has been used to investigate the mechanisms of depression, screen for antidepressants, and reveal the mechanism of drug action. In addition, there are certain features in OBX animals resembling those of patients with Alzheimer's disease (AD), including the impaired learning and memory ability and the accumulation of amyloid-β protein (Aβ). In this review, we present the association between olfaction and depression or AD, the surgical procedure of OBX, the behavioral features of OBX animals, the abnormal changes in cortex and hippocampus, and the application of this model for studying depression and AD. These lines of information are important for the development of antidepressant and anti-dementia drugs using this model.
Key words:    olfactory bulbectomy    animal model    behavioral characteristic    neurobiochemistry    depression    Alzheimer's disease   
收稿日期: 2018-11-19
DOI: 10.16438/j.0513-4870.2018-1043
基金项目: 中国医学科学院创新工程项目(2016-I2M-1-012);国家重大新药创制专项(2017ZX09301029).
通讯作者: 常琪,Tel:86-10-57833468,E-mail:qchang@implad.ac.cn
Email: qchang@implad.ac.cn
PDF(684KB) Free
周云丰  在本刊中的所有文章
陶雪  在本刊中的所有文章
王丽莎  在本刊中的所有文章
张梦荻  在本刊中的所有文章
王智  在本刊中的所有文章
刘新民  在本刊中的所有文章
常琪  在本刊中的所有文章

[1] Zhang X, Long Q, Chu SF, et al. Inhibitory effect of extratable petroleum ether of Polyrhachis vicina Roger on neuroinflammatory response in depressed rats[J]. Acta Pharm Sin (药学学报), 2018, 53:1042-1047.
[2] Morales-Medina JC, Iannitti T, Freeman A, et al. The olfactory bulbectomized rat as a model of depression:the hippocampal pathway[J]. Behav Brain Res, 2017, 317:562-575.
[3] Breuer ME, Groenink L, Oosting RS, et al. Long-term behavioral changes after cessation of chronic antidepressant treatment in olfactory bulbectomized rats[J]. Biol Psychiatry, 2007, 61:990-995.
[4] Avetisyan AV, Samokhin AN, Alexandrova IY, et al. Mitochondrial dysfunction in neocortex and hippocampus of olfactory bulbectomized mice, a model of Alzheimer's disease[J]. Biochemistry, 2016, 81:615-623.
[5] Heimer L. The legacy of the silver methods and the new anatomy of the basal forebrain:implications for neuropsychiatry and drug abuse[J]. Scand J Psychol, 2003, 44:189-201.
[6] Shipley MT, Ennis M. Functional organization of olfactory system[J]. J Neurobiol, 1996, 30:123-176.
[7] Kohli P, Soler ZM, Nguyen SA, et al. The association between olfaction and depression:a systematic review[J]. Chem Senses, 2016, 41:479-486.
[8] Negoias S, Croy I, Gerber J, et al. Reduced olfactory bulb volume and olfactory sensitivity in patients with acute major depression[J]. Neuroscience, 2010, 169:415-421.
[9] Croy I, Negoias S, Symmank A, et al. Reduced olfactory bulb volume in adults with a history of childhood maltreatment[J]. Chem Senses, 2013, 38:679-684.
[10] Pause BM, Miranda A, Goder R, et al. Reduced olfactory performance in patients with major depression[J]. J Psychiatr Res, 2001, 35:271-277.
[11] Croy I, Symmank A, Schellong J, et al. Olfaction as a marker for depression in humans[J]. J Affect Disord, 2014, 160:80-86.
[12] Yang D, Li Q, Fang L, et al. Reduced neurogenesis and pre-synaptic dysfunction in the olfactory bulb of a rat model of depression[J]. Neuroscience, 2011, 192:609-618.
[13] Ferreyra-Moyano H, Barragan E. The olfactory system and Alzheimer's disease[J]. Int J Neurosci, 1989, 49:157-197.
[14] Loopuijt LD, Sebens JB. Loss of dopamine receptors in the olfactory bulb of patients with Alzheimer's disease[J]. Brain Res, 1990, 529:239-244.
[15] Pearson RC, Esiri MM, Hiorns RW, et al. Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease[J]. Proc Natl Acad Sci U S A, 1985, 82:4531-4534.
[16] Korczyn AD. Neuropsychiatric manifestations in Parkinson's disease[J]. Adv Neurol, 2001, 86:395-398.
[17] Watson JB. Kinasthetic and organic sensations:their role in the reactions of the white rat to the maze[J]. Psychol Rev, 1907.DOI:10.1037/h0093040.
[18] van Riezen H, Schnieden H, Wren A. Behavioural changes following olfactory bulbectomy in rats:a possible model for the detection of antidepressant drugs[J]. Br J Pharmacol, 1976, 57:426P-427P.
[19] van Riezen H, Schnieden H, Wren AF. Olfactory bulb ablation in the rat:behavioural changes and their reversal by antidepressant drugs[J]. Br J Pharmacol, 1977, 60:521-528.
[20] Leonard BE, Tuite M. Anatomical, physiological, andbehavioral aspects of olfactory bulbectomy in the rat[J]. Int Rev Neurobiol, 1981, 22:251-286.
[21] Wieronska JM, Papp M, Pilc A. Effects of anxiolytic drugs on some behavioral consequences in olfactory bulbectomized rats[J]. Pol J Pharmacol, 2001, 53:517-525.
[22] Yu HY, Yin ZJ, Yang SJ, et al. Baicalin reverses depressive-like behaviours and regulates apoptotic signalling induced by olfactory bulbectomy[J]. Phytother Res, 2016, 30:469-475.
[23] Jimenez-Sanchez L, Linge R, Campa L, et al. Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex[J]. Neuropharmacology, 2016, 108:91-102.
[24] Thakare VN, Aswar MK, Kulkarni YP, et al. Silymarin ameliorates experimentally induced depressive like behavior in rats:involvement of hippocampal BDNF signaling, inflammatory cytokines and oxidative stress response[J]. Physiol Behav, 2017, 179:401-410.
[25] Uriguen L, Arteta D, Diez-Alarcia R, et al. Gene expression patterns in brain cortex of three different animal models of depression[J]. Genes Brain Behav, 2008, 7:649-658.
[26] Yuan TF, Slotnick BM. Roles of olfactory system dysfunction in depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2014, 54:26-30.
[27] Watanabe A, Tohyama Y, Nguyen KQ, et al. Regional brain serotonin synthesis is increased in the olfactory bulbectomy rat model of depression:an autoradiographic study[J]. J Neurochem, 2003, 85:469-475.
[28] Norman TR, Cranston I, Irons JA, et al. Agomelatine suppresses locomotor hyperactivity in olfactory bulbectomised rats:a comparison to melatonin and to the 5-HT(2c) antagonist, S32006[J]. Eur J Pharmacol, 2012, 674:27-32.
[29] Kang HM, Jin J, Lee S, et al. A novel method for olfactory bulbectomy using photochemically induced lesion[J]. Neuroreport, 2010, 21:179-184.
[30] Kelly JP, Wrynn AS, Leonard BE. The olfactory bulbectomized rat as a model of depression:an update[J]. Pharmacol Ther, 1997, 74:299-316.
[31] Sieck MH, Baumbach HD. Differential effects of peripheral and central anosmia producing techniques on spontaneous behavior patterns[J]. Physiol Behav, 1974, 13:407-425.
[32] Vinkers CH, Breuer ME, Westphal KG, et al. Olfactory bulbectomy induces rapid and stable changes in basal and stress-induced locomotor activity, heart rate and body temperature responses in the home cage[J]. Neuroscience, 2009, 159:39-46.
[33] Hendriksen H, Korte SM, Olivier B, et al. The olfactory bulbectomy model in mice and rat:one story or two tails?[J]. Eur J Pharmacol, 2015, 753:105-113.
[34] Giardina WJ, Radek RJ. Effects of imipramine on the nocturnal behavior of bilateral olfactory bulbectomized rats[J]. Biol Psychiatry, 1991, 29:1200-1208.
[35] van der Stelt HM, Breuer ME, Olivier B, et al. Permanent deficits in serotonergic functioning of olfactory bulbectomized rats:an in vivo microdialysis study[J]. Biol Psychiatry, 2005, 57:1061-1067.
[36] Stockert M, Serra J, De Robertis E. Effect of olfactory bulbectomy and chronic amitryptiline treatment in rats. 3H-imipramine binding and behavioral analysis by swimming and open field tests[J]. Pharmacol Biochem Behav, 1988, 29:681-686.
[37] Kelly JP, Leonard BE. The effect of tianeptine and sertraline in three animal models of depression[J]. Neuropharmacology, 1994, 33:1011-1016.
[38] Primeaux SD, Holmes PV. Role of aversively motivated behavior in the olfactory bulbectomy syndrome[J]. Physiol Behav, 1999, 67:41-47.
[39] Kuczenski R, Leith NJ, Applegate CD. Striatal dopamine metabolism in response to apomorphine:the effects of repeated amphetamine pretreatment[J]. Brain Res, 1983, 258:333-337.
[40] Masini CV, Holmes PV, Freeman KG, et al. Dopamine overflow is increased in olfactory bulbectomized rats:an in vivo microdialysis study[J]. Physiol Behav, 2004, 81:111-119.
[41] Eisenstein SA, Clapper JR, Holmes PV, et al. A role for 2-arachidonoylglycerol and endocannabinoid signaling in the locomotor response to novelty induced by olfactory bulbectomy[J]. Pharmacol Res, 2010, 61:419-429.
[42] Willner P. Animal models of depression:an overview[J]. Pharmacol Ther, 1990, 45:425-455.
[43] Lumia AR, Teicher MH, Salchli F, et al. Olfactory bulbectomy as a model for agitated hyposerotonergic depression[J]. Brain Res, 1992, 587:181-185.
[44] Takahashi K, Murasawa H, Yamaguchi K, et al. Riluzole rapidly attenuates hyperemotional responses in olfactory bulbectomized rats, an animal model of depression[J]. Behav Brain Res, 2011, 216:46-52.
[45] Gotoh L, Saitoh A, Yamada M, et al. Effects of repeated treatment with a delta opioid receptor agonist KNT-127 on hyperemotionality in olfactory-bulbectomized rats[J]. Behav Brain Res, 2017, 323:11-14.
[46] Devadoss T, Pandey DK, Mahesh R, et al. Effect of acute and chronic treatment with QCF-3(4-benzylpiperazin-1-yl) (quinoxalin-2-yl) methanone, a novel 5-HT3 receptor antagonist, in animal models of depression[J]. Pharmacol Rep, 2010, 62:245-257.
[47] Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression[J]. Neurosci Biobehav Rev, 2005, 29:627-647.
[48] Takahashi K, Nakagawasai O, Nemoto W, et al. Memantine ameliorates depressive-like behaviors by regulating hippocampal cell proliferation and neuroprotection in olfactory bulbectomized mice[J]. Neuropharmacology, 2018, 137:141-155.
[49] Borre Y, Lemstra S, Westphal KG, et al. Celecoxib delays cognitive decline in an animal model of neurodegeneration[J]. Behav Brain Res, 2012, 234:285-291.
[50] Hu J, Huang HZ, Wang X, et al. Activation of glycogen synthase kinase-3 mediates the olfactory deficit-induced hippocampal impairments[J]. Mol Neurobiol, 2015, 52:1601-1617.
[51] Chang XR, Wang L, Li J, et al. Analysis of anti-depressant potential of curcumin against depression induced male albino Wistar rats[J]. Brain Res, 2016, 1642:219-225.
[52] Hendriksen H, Meulendijks D, Douma TN, et al. Environmental enrichment has antidepressant-like action without improving learning and memory deficits in olfactory bulbectomized rats[J]. Neuropharmacology, 2012, 62:270-277.
[53] Antunes MS, Jesse CR, Ruff JR, et al. Hesperidin reverses cognitive and depressive disturbances induced by olfactory bulbectomy in mice by modulating hippocampal neurotrophins and cytokine levels and acetylcholinesterase activity[J]. Eur J Pharmacol, 2016, 789:411-420.
[54] Moriguchi S, Han F, Shioda N, et al. Nefiracetam activation of CaM kinase Ⅱ and protein kinase C mediated by NMDA and metabotropic glutamate receptors in olfactory bulbectomized mice[J]. J Neurochem, 2009, 110:170-181.
[55] Mar A, Spreekmeester E, Rochford J. Fluoxetine-induced increases in open-field habituation in the olfactory bulbectomized rat depend on test aversiveness but not on anxiety[J]. Pharmacol Biochem Behav, 2002, 73:703-712.
[56] Holubova K, Kleteckova L, Skurlova M, et al. Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner[J]. Psychopharmacology, 2016, 233:2077-2097.
[57] Jindal A, Mahesh R, Bhatt S. Etazolate, a phosphodiesterase-4 enzyme inhibitor produces antidepressant-like effects by blocking the behavioral, biochemical, neurobiological deficits and histological abnormalities in hippocampus region caused by olfactory bulbectomy[J]. Psychopharmacology, 2015, 232:623-637.
[58] Jindal A, Mahesh R, Bhatt S. Type 4 phosphodiesterase enzyme inhibitor, rolipram rescues behavioral deficits in olfactory bulbectomy models of depression:involvement of hypothalamic-pituitary-adrenal axis, cAMP signaling aspects and antioxidant defense system[J]. Pharmacol Biochem Behav, 2015, 132:20-32.
[59] Roche M, Kerr DM, Hunt SP, et al. Neurokinin-1 receptor deletion modulates behavioural and neurochemical alterations in an animal model of depression[J]. Behav Brain Res, 2012, 228:91-98.
[60] Feng B, Zhao XY, Song YZ, et al. Sarsasapogenin reverses depressive-like behaviors and nicotinic acetylcholine receptors induced by olfactory bulbectomy[J]. Neurosci Lett, 2017, 639:173-178.
[61] Nakagawasai O, Nemoto W, Onogi H, et al. BE360, a new selective estrogen receptor modulator, produces antidepressant and antidementia effects through the enhancement of hippocampal cell proliferation in olfactory bulbectomized mice[J]. Behav Brain Res, 2016, 297:315-322.
[62] Yang SJ, Yu HY, Kang DY, et al. Antidepressant-like effects of salidroside on olfactory bulbectomy-induced pro-inflammatory cytokine production and hyperactivity of HPA axis in rats[J]. Pharmacol Biochem Behav, 2014, 124:451-457.
[63] Cain DP. The role of the olfactory bulb in limbic mechanisms[J]. Psychol Bull, 1974, 81:654-671.
[64] Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb[J]. J Comp Neurol, 1969, 137:433-457.
[65] Leonard BE. The olfactory bulbectomized rat as a model of depression[J]. Pol J Pharmacol Pharm, 1984, 36:561-569.
[66] Duman RS, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment[J]. Neuropsychopharmacology, 2001, 25:836-844.
[67] Capurso SA, Calhoun ME, Sukhov RR, et al. Deafferentation causes apoptosis in cortical sensory neurons in the adult rat[J]. J Neurosci, 1997, 17:7372-7384.
[68] Morales-Medina JC, Juarez I, Venancio-Garcia E, et al. Impaired structural hippocampal plasticity is associated with emotional and memory deficits in the olfactory bulbectomized rat[J]. Neuroscience, 2013, 236:233-243.
[69] Mouly AM, Di Scala G. Entorhinal cortex stimulation modulates amygdala and piriform cortex responses to olfactory bulb inputs in the rat[J]. Neuroscience, 2006, 137:1131-1141.
[70] Agster KL, Burwell RD. Cortical efferents of the perirhinal, postrhinal, and entorhinal cortices of the rat[J]. Hippocampus, 2009, 19:1159-1186.
[71] Morales-Medina JC, Juarez I, Iannitti T, et al. Olfactory bulbectomy induces neuronal rearrangement in the entorhinal cortex in the rat[J]. J Chem Neuroanat, 2013, 52:80-86.
[72] Yurttas C, Schmitz C, Turgut M, et al. The olfactory bulbectomized rat model is not an appropriate model for studying depression based on morphological/stereological studies of the hippocampus[J]. Brain Res Bull, 2017, 134:128-135.
[73] Norrholm SD, Ouimet CC. Altered dendritic spine density in animal models of depression and in response to antidepressant treatment[J]. Synapse, 2001, 42:151-163.
[74] Jaako-Movits K, Zharkovsky A. Impaired fear memory and decreased hippocampal neurogenesis following olfactory bulbectomy in rats[J]. Eur J Neurosci, 2005, 22:2871-2878.
[75] Moriguchi S, Shinoda Y, Yamamoto Y, et al. Stimulation of the sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice[J]. PLoS One, 2013, 8:e60863.
[76] Zhang X, Du Q, Liu C, al et. Rhodioloside ameliorates depressive behavior via up-regulation of monoaminergic system activity and anti-inflammatory effect in olfactory bulbectomized rats[J]. Int Immunopharmacol, 2016, 36:300-304.
[77] Filho CB, Jesse CR, Donato F, et al. Chrysin promotes attenuation of depressive-like behavior and hippocampal dysfunction resulting from olfactory bulbectomy in mice[J]. Chem Biol Interact, 2016, 260:154-162.
[78] Almeida RF, Ganzella M, Machado DG, et al. Olfactory bulbectomy in mice triggers transient and long-lasting behavioral impairments and biochemical hippocampal disturbances[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 76:1-11.
[79] Holzmann I, da Silva LM, Correa da Silva JA, et al. Antidepressant-like effect of quercetin in bulbectomized mice and involvement of the antioxidant defenses, and the glutamatergic and oxidonitrergic pathways[J]. Pharmacol Biochem Behav, 2015, 136:55-63.
[80] Pandey DK, Devadoss T, Modak N, et al. Antidepressant and anxiolytic activities of N-(pyridin-3-yl) quinoxalin-2-carboxamide:a novel serotonin type 3 receptor antagonist in behavioural animal models[J]. Indian J Med Res, 2016, 144:614-621.
[81] Gupta D, Radhakrishnan M, Thangaraj D, et al. Antidepressant and anti-anxiety like effects of 4i (N-(3-chloro-2-methylphenyl) quinoxalin-2-carboxamide), a novel 5-HT3 receptor antagonist in acute and chronic neurobehavioral rodent models[J]. Eur J Pharmacol, 2014, 735:59-67.
[82] Gautam BK, Jindal A, Dhar AK, et al. Antidepressant-like activity of 2-(4-phenylpiperazin-1-yl)-1,8-naphthyridine-3-carboxylic acid (7a), a 5-HT3 receptor antagonist in behaviour based rodent models:evidence for the involvement of serotonergic system[J]. Pharmacol Biochem Behav, 2013, 109:91-97.
[83] Jiang ZC, Qi WJ, Wang JY, et al. Chronic administration of 5-HT1A receptor agonist relieves depression and depression-induced hypoalgesia[J]. ScientificWorldJournal, 2014, 2014:405736.
[84] Kato T, Matsumoto Y, Yamamoto M, et al. DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant effect with minimal undesirable effects in juvenile rats[J]. Pharmacol Res Perspect, 2015, 3:e00142.
[85] Wang LS, Liu XM, Tao X, et al. Application of the animal model of intracerebral injection of amyloid-β oligomers to the study of Alzheimer's disease[J]. Acta Pharm Sin (药学学报), 2018, 53:1060-1067.
[86] Bobkova NV, Nesterova IV, Nesterov VV. The state of cholinergic structures in forebrain of bulbectomized mice[J]. Bull Exp Biol Med, 2001, 131:427-431.
[87] Yamamoto T, Jin J, Watanabe S. Characteristics of memory dysfunction in olfactory bulbectomized rats and the effects of cholinergic drugs[J]. Behav Brain Res, 1997, 83:57-62.
[88] Borre Y, Bosman E, Lemstra S, et al. Memantine partly rescues behavioral and cognitive deficits in an animal model of neurodegeneration[J]. Neuropharmacology, 2012, 62:2010-2017.
[89] Sheline YI, West T, Yarasheski K, et al. An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice[J]. Sci Transl Med, 2014, 6:236re234.
[90] Rajkumar R, Dawe GS. OBscure but not OBsolete:perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression[J]. J Chem Neuroanat, 2018, 91:63-100.
1.李一瀛 胡珍真 黄志力 杨素荣.应激在抑郁症失眠中的作用和常用应激动物模型的睡眠特点[J]. 药学学报, 2012,47(1): 1-6
2.蒋先仲 刘艳芹 张有志 张黎明 李锦 李云峰.幼年注射氟西汀诱导的成年昆明种小鼠抑郁模型和胍丁胺抗抑郁活性[J]. 药学学报, 2009,44(7): 716-721