药学学报, 2019, 54(7): 1166-1173
引用本文:
邵帅, 史高娜, 张天泰. 小胶质细胞活化在慢性神经性疼痛中作用的研究进展[J]. 药学学报, 2019, 54(7): 1166-1173.
SHAO Shuai, SHI Gao-na, ZHANG Tian-tai. Recent advances in microglial activation for treatment of chronic neuropathic pain[J]. Acta Pharmaceutica Sinica, 2019, 54(7): 1166-1173.

小胶质细胞活化在慢性神经性疼痛中作用的研究进展
邵帅, 史高娜, 张天泰
中国医学科学院、北京协和医学院药物研究所, 北京 100050
摘要:
小胶质细胞作为中枢神经系统中主要的天然免疫细胞,对外界伤害性刺激做出应答的过程中可被活化,并与星形胶质细胞及神经元产生相互作用,诱导神经炎症的发生,易化疼痛信号的传导。该应答机制有助于中枢神经系统适应伤害性刺激介导的内环境改变,导致外周及中枢的痛觉神经传导通路的长时程敏感及慢性疼痛。虽然大量的动物实验证实小胶质细胞活化参与慢性神经性疼痛的发生发展和维持,抑制脊髓或脑内小胶质细胞的活化可产生镇痛的效果,但由于其应答机制尚不明确,难以系统阐述小胶质细胞参与疼痛调控的分子事件,因此,目前尚未发现靶向小胶质细胞活化而设计的治疗慢性神经性疼痛的药物。本文拟通过对小胶质细胞与慢性疼痛相关研究文献进行综述,梳理小胶质细胞与慢性疼痛的关系,为调控小胶质细胞活化途径治疗慢性神经性疼痛的新药研发提供一些启示。
关键词:    伤害性刺激      小胶质细胞      神经炎症      疼痛信号      慢性神经性疼痛     
Recent advances in microglial activation for treatment of chronic neuropathic pain
SHAO Shuai, SHI Gao-na, ZHANG Tian-tai
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
As the primary innate immune cells in the central nervous system, microglia can be activated by external noxious stimulus and in turn interact with astroglia and neurons to induce neuroinflammation and facilitate the transmission of pain signals. This response can help the central nervous system adapt to the changes of the internal environment induced by noxious stimulus, leading to the long-term sensitivity of peripheral and central pain nerve conduction pathways and chronic neuropathic pain. Numerous researches found that activation of microglia participated in the occurrence and maintenance of chronic neuropathic pain, and inhibition of microglial activation in the spinal cord or the brain had analgesic effect in animal experiments. Due to the fact that molecular and cellular mechanisms between the activation of microglia and pain remittence are unclear, there are many difficulties in designing of new drugs selectively targeting to the activation of microglia for treatment of chronic neuropathic pain. We review here the research articles on microglia and chronic neuropathic pain, sorting out the relationship between microglia and chronic neuropathic pain, and provide new ideas for the development of new drugs targeting to microglia for the treatment of chronic neuropathic pain.
Key words:    noxious stimulus    microglia    neuroinflammation    pain signal    chronic neuropathic pain   
收稿日期: 2018-12-06
DOI: 10.16438/j.0513-4870.2018-1087
基金项目: 国家自然科学基金面上项目(81373388).
通讯作者: 张天泰,Tel:86-10-63035779,E-mail:ttzhang@imm.ac.cn
Email: ttzhang@imm.ac.cn
相关功能
PDF(1049KB) Free
打印本文
0
作者相关文章
邵帅  在本刊中的所有文章
史高娜  在本刊中的所有文章
张天泰  在本刊中的所有文章

参考文献:
[1] Macfarlane GJ. The epidemiology of chronic pain[J]. Pain, 2016, 157:2158-2159.
[2] Melnikova I. Pain market[J]. Nat Rev Drug Discov, 2010, 9:589-590.
[3] Macfarlane GJ, Beasley M, Smith BH, et al. Can large surveys conducted on highly selected populations provide valid information on the epidemiology of common health conditions? An analysis of UK Biobank data on musculoskeletal pain[J]. Br J Pain, 2015, 9:203-212.
[4] Zeilhofer HU,Benke D,Yevenes GE. Chronic pain states:pharmacological strategies to restore diminished inhibitory spinal pain control[J]. Annu Rev Pharmacol Toxicol, 2012, 52:111- 133.
[5] Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and molecular mechanisms of pain[J]. Cell, 2009, 139:267-284.
[6] Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain[J]. Nat Rev Neurosci, 2013, 14:502-511.
[7] Bliss TV, Collingridge GL, Kaang BK, et al. Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain[J]. Nat Rev Neurosci, 2016, 17:485-496.
[8] Inoue K, Tsuda M. Microglia in neuropathic pain:cellular and molecular mechanisms and therapeutic potential[J]. Nat Rev Neurosci, 2018, 19:138-152.
[9] Todd AJ. Neuronal circuitry for pain processing in the dorsal horn[J]. Nat Rev Neurosci, 2010, 11:823-836.
[10] Peirs C, Seal RP. Neural circuits for pain:recent advances and current views[J]. Science, 2016, 354:578-584.
[11] Gao YJ, Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain[J]. Pharmacol Ther, 2010, 126:56-68.
[12] Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation[J]. Science, 2016, 354:572- 577.
[13] Walters ET. Neuroinflammatory contributions to pain after SCI:roles for central glial mechanisms and nociceptor-mediated host defense[J]. Exp Neurol, 2014, 258:48-61.
[14] Zhou YQ, Liu Z, Liu HQ, et al. Targeting glia for bone cancer pain[J]. Expert Opin Ther Targets, 2016, 20:1365-1374.
[15] Tanga FY, Nutile-McMenemy N, DeLeo JA. The CNS role of toll-like receptor 4 in innate neuroimmunity and painful neuropathy[J]. Proc Natl Acad Sci U S A, 2005, 102:5856-5861.
[16] Xing B, Shen T, Xiao C, et al. Effect of minocycline on activation of microglia M1/M2 phenotypes[J]. Acta Pharm Sin (药学学报), 2017, 52:1255-1261.
[17] Zhou YQ, Liu DQ, Chen SP, et al. Minocycline as a promising therapeutic strategy for chronic pain[J]. Pharmacol Res, 2018, 134:305-310.
[18] Thakur KK, Saini J, Mahajan K, et al. Therapeutic implications of toll-like receptors in peripheral neuropathic pain[J]. Pharmacol Res, 2017, 115:224-232.
[19] Lacagnina MJ, Watkins LR, Grace PM. Toll-like receptors and their role in persistent pain[J]. Pharmacol Ther, 2018, 184:145- 158.
[20] Jurga AM, Rojewska E, Piotrowska A, et al. Blockade of toll-like receptors (TLR2, TLR4) attenuates pain and potentiates buprenorphine analgesia in a rat neuropathic pain model[J]. Neural Plast, 2016, 2016:5238730.
[21] Luo X, Tai WL, Sun L, et al. Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain[J]. Mol Pain, 2016, 12:105-113.
[22] Inoue K. Purinergic signaling in microglia in the pathogenesis of neuropathic pain[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2017, 93:174-182.
[23] Tsuda M. Microglia in the CNS and neuropathic pain[J]. Adv Exp Med Biol, 2018, 1099:77-91.
[24] Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, et al. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury[J]. Glia, 2004, 45:89-95.
[25] Svensson CI, Fitzsimmons B, Azizi S, et al. Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization[J]. J Neurochem, 2005, 92:1508-1520.
[26] Huang Q, Mao XF, Wu HY, et al. Cynandione A attenuates neuropathic pain through p38beta MAPK-mediated spinal microglial expression of beta-endorphin[J]. Brain Behav Immun, 2017, 62:64-77.
[27] Li ZY, Huang Y, Yang YT, et al. Moxibustion eases chronic inflammatory visceral pain through regulating MEK, ERK and CREB in rats[J]. World J Gastroenterol, 2017, 23:6220-6230.
[28] Guo QL, Zhang TT, Shi JG, et al. Aconicarmisulfonine A, a sulfonated C20-diterpenoid alkaloid inner salt with skeleton and analgesic activity from an aqueous extract of the lateral roots of Aconitum carmichaelii[J]. Org Lett, 2018, 20:816-819.
[29] Guo Q, Xia H, Meng X, et al. C19-Diterpenoid alkaloid arabinosides from an aqueous extract of the lateral root of Aconitum carmichaelii and their analgesic activities[J]. Acta Pharm Sin B, 2018, 8:409-419.
[30] Liu C, Zhang Y, Liu Q, et al. P2X4-receptor participates in EAAT3 regulation via BDNF-TrkB signaling in a model of trigeminal allodynia[J]. Mol Pain, 2018, 14:1744806918795930.
[31] Ulmann L, Hatcher JP, Hughes JP, et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain[J]. J Neurosci, 2008, 28:11263-11268.
[32] Bhattacharya A, Jones DNC. Emerging role of the P2X7-NLRP3-IL1beta pathway in mood disorders[J]. Psychoneuroendocrinology, 2018, 98:95-100.
[33] Matsumura Y, Yamashita T, Sasaki A, et al. A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain[J]. Sci Rep, 2016, 6:32461.
[34] Li SJ, Zhang YF, Ma SH, et al. The role of NLRP3 inflammasome in stroke and central poststroke pain[J]. Medicine, 2018, 97:e11861.
[35] Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, et al. Selective activation of microglia facilitates synaptic strength[J]. J Neurosci, 2015, 35:4552-4570.
[36] Tatsumi E, Yamanaka H, Kobayashi K, et al. RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain[J]. Glia, 2015, 63:216-228.
[37] Lord B, Aluisio L, Shoblock JR, et al. Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432[J]. J Pharmacol Exp Ther, 2014, 351:628-641.
[38] Honore P, Donnelly-Roberts D, Namovic MT, et al. A-740003[N-(1-{[(cyanoimino)(5-quinolinylamino)methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat[J]. J Pharmacol Exp Ther, 2006, 319:1376-1385.
[39] Bhattacharya A, Biber K. The microglial ATP-gated ion channel P2X7 as a CNS drug target[J]. Glia, 2016, 64:1772-1787.
[40] Guan Z, Kuhn JA, Wang X, et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain[J]. Nat Neurosci, 2016, 19:94-101.
[41] Lim H, Lee H, Noh K, et al. IKK/NF-kappaB dependent satellite glia activation induces spinal cord microglia activation and neuropathic pain after nerve injury[J]. Pain, 2017, 158:1666-1677.
[42] Nho B, Lee J, Lee J, et al. Effective control of neuropathic pain by transient expression of hepatocyte growth factor in a mouse chronic constriction injury model[J]. FASEB J, 2018, 32:5119-5131.
[43] Abbadie C, Bhangoo S, De Koninck Y, et al. Chemokines and pain mechanisms[J]. Brain Res Rev, 2009, 60:125-134.
[44] Zhang ZJ, Jiang BC, Gao YJ. Chemokines in neuron-glial cell interaction and pathogenesis of neuropathic pain[J]. Cell Mol Life Sci, 2017, 74:3275-3291.
[45] Liu C, Zhang F, Liu H, et al. NF-κB mediated CX3CL1 activation in the dorsal root ganglion contributes to the maintenance of neuropathic pain induced in adult male Sprague Dawley rats[J]. Acta Cir Bras, 2018, 33:619-628.
[46] Wang J, Zhang XS, Tao R, et al. Upregulation of CX3CL1 mediated by NF-kappaB activation in dorsal root ganglion contributes to peripheral sensitization and chronic pain induced by oxaliplatin administration[J]. Mol Pain, 2017, 13:1744806917726256.
[47] Giegling I, Andreassen OA, Engedal K, et al. Variant of TREM2 associated with the risk of Alzheimer's disease[J]. N Engl J Med, 2013, 368:107-116.
[48] Masaaki K, Hiroyuki K, Akira S, et al. TREM2/DAP12 signal elicits proinflammatory response in microglia and exacerbates neuropathic pain[J]. J Neurosci, 2016, 36:11138-11150.
[49] Wang Y, Cella M, Mallinson K, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model[J]. Cell, 2015, 160:1061-1071.
[50] Melemedjian OK, Yassine HN, Shy A, et al. Proteomic and functional annotation analysis of injured peripheral nerves reveals ApoE as a protein upregulated by injury that is modulated by metformin treatment[J]. Mol Pain, 2013, 9:14.
[51] Batti L, Sundukova M, Murana E, et al. TMEM16F regulates spinal microglial function in neuropathic pain states[J]. Cell Rep, 2016, 15:2608-2615.
[52] Callahan MK, Williamson P, Schlegel RA. Surface expression of phosphatidylserine on macrophages is required for phagocytosis of apoptotic thymocytes[J]. Cell Death Differ, 2000, 7:645-653.
[53] Ohsawa K, Irino Y, Sanagi T, et al. P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP[J]. Glia, 2010, 58:790-801.
相关文献:
1.肖梦洁, 孙平, 胡文辉.基于小胶质细胞功能障碍的阿尔茨海默病药物研发[J]. 药学学报, 2017,52(11): 1660-1666