药学学报, 2019, 54(7): 1179-1189
引用本文:
葛均悦, 胡德俊, 张颖, 李萍, 李彬. MALDI质谱成像技术在药用植物研究中的应用[J]. 药学学报, 2019, 54(7): 1179-1189.
GE Jun-yue, HU De-jun, ZHANG Ying, LI Ping, LI Bin. Analytical capabilities of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and its potential applications in medicinal plants[J]. Acta Pharmaceutica Sinica, 2019, 54(7): 1179-1189.

MALDI质谱成像技术在药用植物研究中的应用
葛均悦, 胡德俊, 张颖, 李萍, 李彬
中国药科大学, 天然药物活性组分与药效国家重点实验室, 江苏 南京 210009
摘要:
基质辅助激光解吸/电离(matrix-assisted laser desorption/ionization,MALDI)质谱成像(mass spectrometry imaging,MSI)技术是一种新型分子成像技术,具有免标记、高覆盖、高灵敏度等优势,被广泛应用于蛋白质、多肽、小分子代谢物的组织分布研究。随着MALDI-MSI技术的不断发展,该技术在研究药用植物化学成分组织分布方面展现出了极大的应用价值。本文首先介绍了MALDI-MSI技术的基本原理、样品制备方法以及基质的选择和喷涂。然后重点综述了MALDI-MSI在药用植物次生代谢产物的组织空间分布和累积规律研究中的应用。MALDI-MSI技术作为新兴的分子成像技术,能够可视化分析药用植物中多种次生代谢产物组织分布,为阐明药用植物活性物质的合成途径、转运过程以及累积部位提供了科学、直观的判断依据。
关键词:    质谱成像      基质辅助激光解吸/电离质谱      药用植物      次生代谢产物      组织分布     
Analytical capabilities of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and its potential applications in medicinal plants
GE Jun-yue, HU De-jun, ZHANG Ying, LI Ping, LI Bin
State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
Abstract:
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), as a label-free imaging technique with high coverage and sensitivity is widely used for visualizing the spatial distribution of proteins, peptides and small metabolites in tissues. With the development of MALDI technique, MALDI-MSI is also employed to monitor the spatial distribution of phytochemical constituents of medicinal plants. In this review, we first briefly introduce MALDI-MSI technique, and we focus on its application in the spatial distribution and accumulation of secondary metabolites in medicinal plants. The ultimate advantage of using MALDI-MSI for spatial distribution analysis at the molecular level, offers crucial evidence of synthesis, transfer and accumulation of bioactive molecules in medicinal plants.
Key words:    mass spectrometry imaging    MALDI-MS    medicinal plant    secondary metabolites    tissue distribution   
收稿日期: 2019-04-04
DOI: 10.16438/j.0513-4870.2019-0233
基金项目: 国家自然科学基金资助项目(81773873);中国药科大学"双一流"建设团队项目资助(CPU2018GY09).
通讯作者: 李萍,Tel:86-25-85391290,E-mail:liping2004@126.com;李彬,Tel:86-25-83271382,E-mail:binli@cpu.edu.cn
Email: liping2004@126.com;binli@cpu.edu.cn
相关功能
PDF(8373KB) Free
打印本文
0
作者相关文章
葛均悦  在本刊中的所有文章
胡德俊  在本刊中的所有文章
张颖  在本刊中的所有文章
李萍  在本刊中的所有文章
李彬  在本刊中的所有文章

参考文献:
[1] Wolfender JL, Marti G, Thomas A, et al. Current approaches and challenges for the metabolite profiling of complex natural extracts[J]. J Chromatogr A, 2015, 1382:136-164.
[2] Ernst M, Silva DB, Silva RR, et al. Mass spectrometry in plant metabolomics strategies:from analytical platforms to data acquisition and processing[J]. Nat Prod Rep, 2014, 31:784-806.
[3] Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future[J]. Science, 2018, 353:1232-1236.
[4] Zhang Z, Bo T, Bai Y, et al. Quadrupole time-of-flight mass spectrometry as a powerful tool for demystifying traditional Chinese medicine[J]. TrAC Trends Anal Chem, 2015, 72:169-180.
[5] McDonnell LA, Rompp A, Balluff B, et al. Discussion point:reporting guidelines for mass spectrometry imaging[J]. Anal Bioanal Chem, 2015, 407:2035-2045.
[6] Hansen RL, Lee YJ. High-spatial resolution mass spectrometry imaging:toward single cell metabolomics in plant tissues[J]. Chem Rec, 2018, 18:65-77.
[7] Spengler B. Mass spectrometry imaging of biomolecular information[J]. Anal Chem, 2015, 87:64-82.
[8] Bodzon-Kulakowska A, Suder P. Imaging mass spectrometry:instrumentation, applications, and combination with other visualization techniques[J]. Mass Spectrom Rev, 2016, 35:147-169.
[9] Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution[J]. Nat Methods, 2017, 14:90-96.
[10] Zhang QY, Nie HG. Advances in mass spectrometry imaging technology[J]. Anal Instrum (分析仪器), 2018, (5):1-10.
[11] Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 Daltons[J]. Anal Chem, 1988, 60:2299-2301.
[12] Tanaka K, Waki H, Ido Y, et al. Protein and polymer analyses up to m/z 100000 by laser ionization time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrom, 1988, 2:151-153.
[13] Spengler B, Hubert M, Kaufmann R. Proceedings of the 42nd ASMS Conference on Mass Spectrometry and Allied Topics[C]. Chicago, Illinois, 1994:1041.
[14] Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples:localization of peptides and proteins using MALDI-TOF MS[J]. Anal Chem, 1997, 69:4751-4760.
[15] Schwartz SA, Reyzer ML, Caprioli RM. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry:practical aspects of sample preparation[J]. J Mass Spectrom, 2003, 38:699-708.
[16] Dill AL, Eberlin LS, Costa AB, et al. Data quality in tissue analysis using desorption electrospray ionization[J]. Anal Bioanal Chem, 2011, 401:1949-1961.
[17] Zaima N, Hayasaka T, Goto-Inoue N, et al. Matrix-assisted laser desorption/ionization imaging mass spectrometry[J]. Int J Mol Sci, 2010, 11:5040-5055.
[18] Goto-Inoue N, Hayasaka T, Zaima N, et al. Imaging mass spectrometry visualizes ceramides and the pathogenesis of Dorfman-Chanarin syndrome due to ceramide metabolic abnormality in the skin[J]. PLoS One, 2012, 7:49519.
[19] Gemperline E, Jayaraman D, Maeda J, et al. Multifaceted investigation of metabolites during nitrogen fixation in Medicago via high resolution MALDI-MS imaging and ESI-MS[J]. J Am Soc Mass Spectrom, 2015, 26:149-158.
[20] Khatib-Shahidi S, Andersson M, Herman JL, et al. Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry[J]. Anal Chem, 2006, 78:6448-6456.
[21] Sugiura Y, Shimma S, Setou M. Thin sectioning improves the peak intensity and signal-to-noise ratio in direct tissue mass spectrometry[J]. J Mass Spectrom Soc Jpn, 2006, 54:45-48.
[22] Cha S, Zhang H, Ilarslan HI, et al. Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry[J]. Plant J, 2008, 55:348-360.
[23] Li B, Zhang Y, Ge J, et al. Sample preparation for mass spectrometry imaging of leaf tissues:a case study on analyte delocalization[J]. Anal Bioanal Chem, 2018, 410:7449-7456.
[24] Soares MS, Silva DF, Forim MR, et al. Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry[J]. Phytochemistry, 2015, 115:161-170.
[25] Wang Y, Xu W, Li L, et al. Relative molecular weight determination of astragalus polysaccharides for injection[J]. Acta Pharm Sin (药学学报), 2019, 54:348-353.
[26] Korte AR, Lee YJ. MALDI-MS analysis and imaging of small molecule metabolites with 1,5-diaminonaphthalene (DAN)[J]. J Mass Spectrom, 2014, 49:737-741.
[27] Ayorinde FO, Bezabeh DZ, Delves IG. Preliminary investigation of the simultaneous detection of sugars, ascorbic acid, citric acid, and sodium benzoate in non-alcoholic beverages by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Rapid Commun Mass Spectrom, 2003, 17:1735-1742.
[28] Jackson SN, Baldwin K, Muller L, et al. Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles[J]. Anal Bioanal Chem, 2014, 406:1377-1386.
[29] Lee KH, Chiang CK, Lin ZH, et al. Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices[J]. Rapid Commun Mass Spectrom, 2007, 21:2023-2030.
[30] Wu Q, Chu JL, Rubakhin SS, et al. Dopamine-modified TiO2 monolith-assisted LDI MS imaging for simultaneous localization of small metabolites and lipids in mouse brain tissue with enhanced detection selectivity and sensitivity[J]. Chem Sci, 2017, 8:3926-3938.
[31] Berry KA, Hankin JA, Barkley RM, et al. MALDI imaging of lipid biochemistry in tissues by mass spectrometry[J]. Chem Rev, 2011, 111:6491-6512.
[32] Bouschen W, Schulz O, Eikel D, et al. Matrix vapor deposition/recrystallization and dedicated spray preparation for high-resolution scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS) of tissue and single cells[J]. Rapid Commun Mass Spectrom, 2010, 24:355-364.
[33] Yang J, Caprioli RM. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution[J]. Anal Chem, 2011, 83:5728-5734.
[34] Deininger SO, Cornett DS, Paape R, et al. Normalization in MALDI-TOF imaging datasets of proteins:practical considerations[J]. Anal Bioanal Chem, 2011, 401:167-181.
[35] Tang W, Chen J, Zhou J, et al. Quantitative MALDI imaging of spatial distributions and dynamic changes of tetrandrine in multiple organs of rats[J]. Theranostics, 2019, 9:932-944.
[36] Lai YH, So PK, Lo SC, et al. Rapid differentiation of Panax ginseng and Panax quinquefolius by matrix-assisted laser desorption/ionization mass spectrometry[J]. Anal Chim Acta, 2012, 753:73-81.
[37] Wang S, Bai H, Cai Z, et al. MALDI imaging for the localization of saponins in root tissues and rapid differentiation of three Panax herbs[J]. Electrophoresis, 2016, 37:1956-1966.
[38] Bai H, Wang S, Liu J, et al. Localization of ginsenosides in Panax ginseng with different age by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry imaging[J]. J Chromatogr B, 2016, 1026:263-271.
[39] Li B, Bhandari DR, Janfelt C, et al. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging[J]. Plant J, 2014, 80:161-171.
[40] Feng B, Zhang J, Chang C, et al. Ambient mass spectrometry imaging:plasma assisted laser desorption ionization mass spectrometry imaging and its applications[J]. Anal Chem, 2014, 86:4164-4169.
[41] Lange BM, Fischedick JT, Lange MF, et al. Integrative approaches for the identification and localization of specialized metabolites in Tripterygium roots[J]. Plant Physiol, 2017, 173:456-469.
[42] Eckelmann D, Kusari S, Spiteller M. Occurrence and spatial distribution of maytansinoids in Putterlickia pyracantha, an unexplored resource of anticancer compounds[J]. Fitoterapia, 2016, 113:175-181.
[43] Li B, Neumann EK, Ge J, et al. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging[J]. Plant Cell Environ, 2018, 41:2693-2703.
[44] Liu XN, Pei X, Gong C, et al. Matrix-assisted laser desorption ionization-mass spectrometry imaging of small molecules in mulberry leaf using ionic liquid as matrix[J]. Chin J Anal Chem (分析化学), 2018, 46:1923-1930.
[45] Niziol J, Sekula J, Ruman T. Visualizing spatial distribution of small molecules in the rhubarb stalk (Rheum rhabarbarum) by surface-transfer mass spectrometry imaging[J]. Phytochemistry, 2017, 139:72-80.
[46] Yamamoto K, Takahashi K, Mizuno H, et al. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with imaging MS and single-cell MS[J]. Proc Natl Acad Sci U S A, 2016, 113:3891-3896.
[47] Li B, Bhandari DR, Rompp A, et al. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora[J]. Sci Rep, 2016, 6:36074.
[48] Kusari S, Sezgin S, Nigutova K, et al. Spatial chemo-profiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging[J]. Anal Bioanal Chem, 2015, 407:4779-4791.
[49] Ng KM, Liang Z, Lu W, et al. In vivo analysis and spatial profiling of phytochemicals in herbal tissue by matrix-assisted laser desorption/ionization mass spectrometry[J]. Anal Chem, 2007, 79:2745-2755.
[50] Harada T, Yuba-Kubo A, Sugiura Y, et al. Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope[J]. Anal Chem, 2009, 81:9153-9157.
[51] Taira S, Ikeda R, Yokota N, et al. Mass spectrometric imaging of ginsenosides localization in Panax ginseng root[J]. Am J Chin Med, 2010, 38:485-493.
[52] Marques JV, Dalisay DS, Yang H, et al. A multi-omics strategy resolves the elusive nature of alkaloids in Podophyllum species[J]. Mol Biosyst, 2014, 10:2838-2849.
[53] Beck S, Stengel J. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L.[J]. Phytochemistry, 2016, 130:201-206.
[54] He H, Qin L, Zhang Y, et al. 3,4-Dimethoxycinnamic acid as a novel matrix for enhanced in situ detection and imaging of low-molecular-weight compounds in biological tissues by MALDI-MSI[J]. Anal Chem, 2019, 91:2634-2643.
[55] Lu X, Yang H, Liu X, et al. Combining metabolic profiling and gene expression analysis to reveal the biosynthesis site and transport of ginkgolides in Ginkgo biloba L.[J]. Front Recent Dev Plant Sci, 2017, 8:872.
[56] Thunig J, Hansen SH, Janfelt C. Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry[J]. Anal Chem, 2011, 83:3256-3259.
[57] Holscher D, Shroff R, Knop K, et al. Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level:distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species[J]. Plant J, 2009, 60:907-918.