药学学报, 2019, 54(7): 1190-1199
引用本文:
夏彦铭, 陈慧, 叶天健, 张建军, 高缘. 黄酮类中药活性成分晶型研究进展[J]. 药学学报, 2019, 54(7): 1190-1199.
XIA Yan-ming, CHEN Hui, YE Tian-jian, ZHANG Jian-jun, GAO Yuan. Investigations of solid states for flavonoids from traditional Chinese medicine[J]. Acta Pharmaceutica Sinica, 2019, 54(7): 1190-1199.

黄酮类中药活性成分晶型研究进展
夏彦铭1, 陈慧1, 叶天健3, 张建军2, 高缘1
1. 中国药科大学中药学院, 江苏 南京 211198;
2. 中国药科大学药学院, 江苏 南京 211198;
3. 浙江永宁药业股份有限公司, 浙江 台州 318020
摘要:
黄酮是中药中的一类重要活性成分,但因其水溶性差、生物利用度低等缺点,制剂研发难度较大。药物晶体学研究作为制剂学新型技术手段,可以改善难溶性药物存在的诸多问题。本文从多晶型、共晶、无定形与共无定形和纳米晶体等四个方面综述了黄酮类药物的晶型研究进展,并对其规律进行总结,为药物晶体研究在中药难溶性成分中的应用提供参考。
关键词:    黄酮      中药      晶型      共晶     
Investigations of solid states for flavonoids from traditional Chinese medicine
XIA Yan-ming1, CHEN Hui1, YE Tian-jian3, ZHANG Jian-jun2, GAO Yuan1
1. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
2. School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
3. Zhejiang Yongning Pharmaceutical Co. Ltd., Taizhou 318020, China
Abstract:
Flavonoids are important active ingredients in traditional Chinese medicine. However, their applications for the pharmaceutical use are greatly limited by low oral bioavailability due to poor aqueous solubility. The study of pharmaceutical crystallography is a potential approach to solve many problems of poor solubility. Research progress of flavonoid compounds in pharmaceutical crystallography field was reviewed from following aspects:polymorphism, cocrystal, amorphous/co-amorphous and nanocrystals. The information provided here is expected to serve as a reference for the applications of pharmaceutical crystallography in the poorly soluble components of traditional Chinese medicine.
Key words:    flavonoids    traditional Chinese medicine    polymorphism    cocrystal   
收稿日期: 2019-01-28
DOI: 10.16438/j.0513-4870.2019-0093
基金项目: 国家自然科学基金资助项目(81773675,81873012);中国药科大学"双一流"建设(CPU2018GY11,CPU2018GY27);江苏省研究生创新计划项目(2019).
通讯作者: 高缘,Tel/Fax:86-25-83379418,E-mail:newgaoyuan@163.com
Email: newgaoyuan@163.com
相关功能
PDF(1514KB) Free
打印本文
0
作者相关文章
夏彦铭  在本刊中的所有文章
陈慧  在本刊中的所有文章
叶天健  在本刊中的所有文章
张建军  在本刊中的所有文章
高缘  在本刊中的所有文章

参考文献:
[1] Bhattacharya S. Are we in the polyphenols era?[J]. Pharmacogn Res, 2011, 3:147.
[2] Koirala N, Thuan NH, Ghimire GP, et al. Methylation of flavonoids:chemical structures, bioactivities, progress and perspectives for biotechnological production[J]. Enzyme Microb Technol, 2016, 86:103-116.
[3] Vezza T, Rodriguez-Nogales A, Algieri F, et al. Flavonoids in inflammatory bowel disease:a review[J]. Nutrients, 2016, 8:211.
[4] Kumar S, Pandey AK. Chemistry and biological activities of flavonoids:an overview[J]. Sci World J, 2013, 2013:162750.
[5] Romagnolo DF, Selmin OI. Flavonoids and cancer prevention:a review of the evidence[J]. J Nutr Gerontol Geriatr, 2012, 31:206-238.
[6] Xia JF, Gao JJ, Inagaki Y, et al. Flavonoids as potential anti-hepatocellular carcinoma agents:recent approaches using HepG2 cell line[J]. Drug Discov Ther, 2013, 7:1-8.
[7] Xie Y, Yang W, Tang F, et al. Antibacterial activities of flavonoids:structure-activity relationship and mechanism[J]. Curr Med Chem, 2015, 22:132-149.
[8] Peluso I, Miglio C, Morabito G, et al. Flavonoids and immune function in human:a systematic review[J]. Crit Rev Food Sci Nutr, 2015, 55:383-395.
[9] Nijveldt RJ, van Nood E, van Hoorn DE, et al. Flavonoids:a review of probable mechanisms of action and potential applications[J]. Am J Clin Nutr, 2001, 74:418-425.
[10] Gonzalez R, Ballester I, Lopez-Posadas R, et al. Effects of flavonoids and other polyphenols on inflammation[J]. Crit Rev Food Sci Nutr, 2011, 51:331-362.
[11] Rothwell JA, Day AJ, Morgan MRA. Experimental determination of octanol-water partition coefficients of quercetin and related flavonoids[J]. J Agric Food Chem, 2005, 53:4355-4360.
[12] Luo ZJ, Murray BS, Yusoff A, et al. Particle-stabilizing effects of flavonoids at the oil-water interface[J]. J Agric Food Chem, 2011, 59:2636-2645.
[13] Li HF, Zhang D, Qu WJ, et al. Biopharmaceutics classification and absorption mechanisms primary study on four kinds of flavonoids[J]. China J Chin Mater Med (中国中药杂志), 2016, 41:1198-1203.
[14] Zhang JJ, Liu DP, Huang YT, et al. Biopharmaceutics classification and intestinal absorption study of apigenin[J]. Int J Pharm, 2012, 436:311-317.
[15] Zhang HJ, Wang M, Chen LN, et al. Determination of twelve flavonoids' oil-water partition coefficients[J]. Chin Tradit Pat Med (中成药), 2016, 38:1708-1711.
[16] Walle UK, Galijatovic A, Walle T. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2[J]. Biochem Pharmacol, 1999, 58:431-438.
[17] Zhou P, Li LP, Luo SQ, et al. Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin[J]. J Agric Food Chem, 2008, 56:296-300.
[18] Madaan K, Lather V, Pandita D. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid[J]. Drug Deliv, 2016, 23:254-262.
[19] Wei Y, Zhou S, Hao T, et al. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin[J]. Eur J Pharm Sci, 2018, 129:21-30.
[20] Li H, Dong L, Liu Y, et al. Biopharmaceutics classification of puerarin and comparison of perfusion approaches in rats[J]. Int J Pharm, 2014, 466:133-138.
[21] Petrussa E, Braidot E, Zancani M, et al. Plant flavonoids-biosynthesis, transport and involvement in stress responses[J]. Int J Mol Sci, 2013, 14:14950-14973.
[22] Cao H, Chen XQ, Jassbi AR, et al. Microbial biotransformation of bioactive flavonoids[J]. Biotechnol Adv, 2015, 33:214-223.
[23] Zhang KX, Jiang Y, Chen XH. Research progress of flavonoid phospholipid complexes[J]. J Shenyang Pharm Univ (沈阳药科大学学报), 2015, 32:394-399.
[24] Li QQ, Wang K, Xue XF, et al. Advance of the preparation and biological activity of flavonoid phospholipid complex[J]. Chin J Mod Appl Pharm (中国现代应用药学), 2018, 35:132-137.
[25] Li H, Zhao X, Ma Y, et al. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles[J]. J Control Release, 2009, 133:238-244.
[26] Singhal D, Curatolo W. Drug polymorphism and dosage form design:a practical perspective[J]. Adv Drug Deliv Rev, 2004, 56:335-347.
[27] Sarma B, Chen J, His HY, et al. Solid forms of pharmaceuticals:polymorphs, salts and cocrystals[J]. Korean J Chem Eng, 2011, 28:315-322.
[28] Seo HO, Sohn YT. Crystal transformation of a flavonoid derivative DA-6034[J]. J Therm Anal Calorim, 2015, 120:749-757.
[29] Zhong ZY, Wu M, Qian S, et al. Inhibition of transformation from puerarin monohydrate to puerarin dihydrate by polyvinylpyrrolidones during dissolution[J]. Acta Pharm Sin (药学学报), 2017, 52:302-309.
[30] Mangin D, Puel F, Veesler S. Polymorphism in processes of crystallization in solution:a practical review[J]. Org Process Res Dev, 2009, 13:1241-1253.
[31] Franklin SJ, Myrdal PB. Solid-state and solution characterization of myricetin[J]. AAPS PharmSciTech, 2015, 16:1400-1408.
[32] Aaltonen J, Alleso M, Mirza S, et al. Solid form screening——a review[J]. Eur J Pharm Biopharm, 2009, 71:23-37.
[33] Gao Y, Zu H, Zhang JJ. Pharmaceutical cocrystals[J]. Prog Chem (化学进展), 2010, 22:829-836.
[34] Aakeroy CB, Salmon DJ. Building co-crystals with molecular sense and supramolecular sensibility[J]. CrysTengComm, 2005, 7:439-448.
[35] Goldberg I. Crystal engineering of nanoporous architectures and chiral porphyrin assemblies[J]. CrysTengComm, 2008, 10:637-645.
[36] Banerjee R, Saha BK, Desiraju GR. Synthon robustness in saccharinate salts of some substituted pyridines[J]. CrysTengComm, 2006, 8:680-685.
[37] Saha BK, Nangia A, Jaskolski M. Crystal engineering with hydrogen bonds and halogen bonds[J]. CrysTengComm, 2005, 7:355-358.
[38] Braga D, Brammer L, Champness NR. New trends in crystal engineering[J]. CrysTengComm, 2005, 7:1-19.
[39] Aakeroey CB, Desper J, Fasulo M, et al. Ten years of co-crystal synthesis; the good, the bad, and the ugly[J]. CrysTengComm, 2008, 10:1816-1821.
[40] Jayasankar A, Reddy LS, Bethune SJ, et al. Role of cocrystal and solution chemistry on the formation and stability of cocrystals with different stoichiometry[J]. Cryst Growth Des, 2009, 9:889-897.
[41] Trask AV, Motherwell WSD, Jones W. Physical stability enhancement of theophylline via cocrystallization[J]. Int J Pharm, 2006, 320:114-123.
[42] Huang Y, Zhang B, Gao Y, et al. Baicalein-nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability[J]. J Pharm Sci, 2014, 103:2330-2337.
[43] Sowa M, Slepokura K, Matczak-Jon E. A 1:1 cocrystal of baicalein with nicotinamide[J]. Acta Crystallogr C, 2012, 68:o262-265.
[44] Sowa M, Slepokura K, Matczak-Jon E. Cocrystals of fisetin, luteolin and genistein with pyridinecarboxamide coformers:crystal structures, analysis of intermolecular interactions, spectral and thermal characterization[J]. CrysTengComm, 2013, 15:7696-7708.
[45] He MY. Synthesis and Properties of Natural Pharmaceutical Co-crystals of Polyhydroxy Flavonoids (多羟基黄酮类天然药物共晶的合成及其性质研究). Jiamusi:Jiamusi University, 2017.
[46] Zhang YN, Yin HM, Zhang Y, et al. Cocrystals of kaempferol, quercetin and myricetin with 4,4'-bipyridine:crystal structures, analyses of intermolecular interactions and antibacterial properties[J]. J Mol Struct, 2017, 1130:199-207.
[47] Smith AJ, Kavuru P, Wojtas L, et al. Cocrystals of quercetin with improved solubility and oral bioavailability[J]. Mol Pharm, 2011, 8:1867-76.
[48] Sowa M, Slepokura M, Matczak-Jon E. A 1:1 pharmaceutical cocrystal of myricetin in combination with uncommon piracetam conformer:X-ray single crystal analysis and mechanochemical synthesis[J]. J Mol Struct, 2014, 1058:114-121.
[49] Hu CC, Cheng H, Xu JJ, et al. Formation thermodynamics of myricetin-caffeine cocrystal in different organic solvents[J]. Cent South Pharm (中南药学), 2017, 15:567-572.
[50] Xu JJ, Wei YF, Qian S, et al. Preparation of myricetin-caffeine cocrystal and its single crystal analysis[J]. J China Pharm Univ (中国药科大学学报), 2016, 47:324-328.
[51] Sowa M, Slepokura K, Matczak-Jon E. Solid-state characterization and solubility of a genistein-caffeine cocrystal[J]. J Mol Struct, 2014, 1076:80-88.
[52] Sowa M, Slepokura K, Matczak-Jon K. A 1:2 cocrystal of genistein with isonicotinamide:crystal structure and Hirshfeld surface analysis[J]. Acta Crystallogr C, 2013, 69:1267-1291.
[53] Zhang YN, Yin HM, Zhang Y, et al. Preparation of a 1:1 cocrystal of genistein with 4,4'-bipyridine[J]. J Cryst Growth, 2017, 458:103-109.
[54] Liang SJ, Zhou SY, Yang ST, et al. Thermodynamic studies of naringenin-isonicotinamide cocrystals[J]. Acta Pharm Sin (药学学报), 2017, 52:625-633.
[55] Luo C, Liang WD, Chen X, et al. Pharmaceutical cocrystals of naringenin with improved dissolution performance[J]. Crystengcomm, 2018, 20:3025-3033.
[56] Chadha K, Karan M, Chadha R, et al. Is Failure of Cocrystallization Actually a Failure? Eutectic Formation in Cocrystal Screening of Hesperetin[J]. J Pharm Sci, 2017, 106:2026-2036.
[57] Chadha K, Karan M, Bhalla Y, et al. Cocrystals of hesperetin:structural, pharmacokinetic, and pharmacodynarnic evaluation[J]. Cryst Growth Des, 2017, 17:2386-2405.
[58] Smith AJ, Kavuru P, Arora KK, et al. Crystal engineering of green tea epigallocatechin-3-gallate (EGCG) cocrystals and pharmacokinetic modulation in rats[J]. Mol Pharmaceutics, 2013, 10:2948-2961.
[59] Gadade DD, Pekamwar SS. Pharmaceutical cocrystals:regulatory and strategic aspects, design and development[J]. Adv Pharm Bull, 2016, 6:479-494.
[60] Aitipamula S, Banerjee R, Bansal AK, et al. Polymorphs, salts, and cocrystals:what's in a name?[J]. Cryst Growth Des, 2012, 12:2147-2152.
[61] Grothe E, Meekes H, Vlieg E, et al. Solvates, salts, and cocrystals:a proposal for a feasible classification system[J]. Cryst Growth Des, 2016, 16:3237-3243.
[62] Savjani KT, Gajjar AK, Savjani JK. Drug solubility:importance and enhancement techniques[J]. ISRN Pharm, 2012, 2012:195727.
[63] Zhang JJ, Shi YL, Luo MQ, et al. Co-amorphous substance of a compound 2016A0C1 pharmaceutical composition:CN, 109180701 A[P]. 2019-01-01.
[64] Zhang JJ, Xu XH, Chen H, et al. Valsartan-puerarin sodium salt complex and its preparation method:CN, 107935958 A[P]. 2018-04-20.
[65] Burke JE, Turnbull D. Recrystallization and grain growth[J]. Prog Met Phys, 1952, 3:220-292.
[66] Luder K, Lindfors L, Westergren J, et al. In silico prediction of drug solubility free energy of solvation in pure amorphous matter[J]. J Phys Chem B, 2007, 111:7303-7311.
[67] Huang PH, Tseng CH, Lin CY, et al. Preparation, characterizations and anti-pollutant activity of 7,3',4'-trihydroxyisoflavone nanoparticles in particulate matter-induced HaCaT keratinocytes[J]. Int J Nanomed, 2018, 13:3279-3293.
[68] Zhu N, Li JC, Zhu JX, et al. Characterization and bioavailability of wogonin by different administration routes in beagles[J]. Med Sci Monit, 2016, 22:3737-3745.
[69] Alonzo DE, Zhang GG, Zhou D, et al. Understanding the behavior of amorphous pharmaceutical systems during dissolution[J]. Pharm Res, 2010, 27:608-618.
[70] Dengale SJ, Hussen SS, Krishna BS, et al. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of ritonavir with quercetin[J]. Eur J Pharm Biopharm, 2015, 89:329-338.
[71] Forster A, Hempenstall J, Tucker I, et al. The potential of small-scale fusion experiments and the Gordon-Taylor equation to predict the suitability of drug/polymer blends for melt extrusion[J]. Drug Dev Ind Pharm, 2001, 27:549-560.
[72] Qian F, Huang J, Hussain MA. Drug-polymer solubility and miscibility:stability consideration and practical challenges in amorphous solid dispersion development[J]. J Pharm Sci, 2010, 99:2941-2947.
[73] Gao Y, Yang ST, Qian S, et al. A co-amorphous compound of puerarin nicotinamide:CN, 107987065A[P]. 2018-05-04.
[74] Wei YF, Ma MJ, Lin YN, et al. A co-amorphous substance of puerarin saccharin and its preparation method:CN, 109180659A[P]. 2019-01-11.
[75] Hao T, Ling Y, Wu M, et al. Enhanced oral bioavailability of docetaxel in rats combined with myricetin:in situ and in vivo evidences[J]. Eur J Pharm Sci, 2017, 101:71-79.
[76] Qian S, Heng WL, Wei YF, et al. Coamorphous lurasidone hydrochloride-saccharin with charge-assisted hydrogen bonding interaction shows improved physical stability and enhanced dissolution with pH-independent solubility behavior[J]. Cryst Growth Des, 2015, 15:2920-2928.
[77] Wang Y, Grayson SM. Approaches for the preparation of non-linear amphiphilic polymers and their applications to drug delivery[J]. Adv Drug Deliv Rev, 2012, 64:852-865.
[78] Ammar HO, Salama HA, Ghorab M, et al. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride[J]. AAPS Pharmscitech, 2009, 10:808-819.
[79] Liu ZH, Jiao YP, Wang YF, et al. Polysaccharides-based nanoparticles as drug delivery systems[J]. Adv Drug Deliv Rev, 2008, 60:1650-1662.
[80] Patel T, Zhou JB, Piepmeier JM, et al. Polymeric nanoparticles for drug delivery to the central nervous system[J]. Adv Drug Deliv Rev, 2012, 64:701-705.
[81] Blasi P, Glovagnoli S, Schoubben A, et al. Solid lipid nanoparticles for targeted brain drug delivery[J]. Adv Drug Deliv Rev, 2007, 59:454-477.
[82] Chacko RT, Ventura J, Zhuang JM, et al. Polymer nanogels:a versatile nanoscopic drug delivery platform[J]. Adv Drug Deliv Rev, 2012, 64:836-851.
[83] Rabinow BE. Nanosuspensions in drug delivery[J]. Nat Rev Drug Discov, 2004, 3:785-796.
[84] Zhou YQ, Du J, Wang LL, et al. Nanocrystals technology for improving bioavailability of poorly soluble drugs:a mini-review[J]. J Nanosci Nanotechnol, 2017, 17:18-28.
[85] Lu CH, Zhang QW, Jia Y. Preparation and characterisation of triangular pyramid-shaped puerarin and aspirin microparticles with nanostructures[J]. J Exp Nanosci, 2011, 6:1-6.
[86] Li Z, Yu L, Zheng LQ, et al. Studies on crystallinity state of puerarin loaded solid lipid nanoparticles prepared by double emulsion method[J]. J Therm Anal Calorim, 2010, 99:689-693.
[87] Zhang Y, Li Y, Zhao XH, et al. Preparation, characterization and bioavailability of oral puerarin nanoparticles by emulsion solvent evaporation method[J]. RSC Adv, 2016, 6:69889-69901.
[88] Zhang J, Lv H, Jiang K, et al. Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal[J]. Int J Pharm, 2011, 420:180-188.
[89] Zhang JJ, Huang YT, Liu DP, et al. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement[J]. Eur J Pharm Sci, 2013, 48:740-747.