药学学报, 2019, 54(7): 1234-1240
引用本文:
邹纯才, 洪国君, 鄢海燕. 网络药理学预测瓜蒌抗心肌缺血再灌注损伤作用机制及验证研究[J]. 药学学报, 2019, 54(7): 1234-1240.
ZOU Chun-cai, HONG Guo-jun, YAN Hai-yan. Predicting and validating the mechanism of Trichosanthes mediated anti-myocardial ischemia-reperfusion injury by network pharmacology[J]. Acta Pharmaceutica Sinica, 2019, 54(7): 1234-1240.

网络药理学预测瓜蒌抗心肌缺血再灌注损伤作用机制及验证研究
邹纯才, 洪国君, 鄢海燕
皖南医学院药学院, 安徽 芜湖 241002
摘要:
基于网络药理学及大鼠(本实验所用动物经皖南医学院医学伦理委员会批准同意)心肌缺血再灌注损伤(myocardial ischemia-reperfusion injury,MIRI)模型验证的方法分析瓜蒌抗MIRI的作用机制。依据口服生物利用度(oral bioavailability,OB)≥ 30%、类药性(drug like,DL)≥ 0.18,通过TCMSP、TCM Database@Taiwan数据库筛选化合物。利用DRAR-CPI数据库获取化合物的PDB ID值(Z'-score <-0.5),并由UniProt数据库转换成靶点蛋白。通过CooLGeN数据库,以"myocardial ischemia reperfusion injury"为关键词,收集人类基因靶点蛋白。利用DAVID数据库进行与MIRI相关靶点蛋白的GOTERM_BP_DIRECT富集分析和Kyoto Encyclopedia of Genes and Genomes(KEGG)_PATHWAY通路注释分析,使用Gephi0.9.2软件构建成分-靶点蛋白-信号通路网络。以复方丹参滴丸(85.05 mg·kg-1)为阳性对照,瓜蒌滴丸(0.2、1.0和2.0 g·kg-1)预处理MIRI大鼠,采用蛋白质免疫印迹(Western blot)法对丝裂原激活的蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路相关蛋白表达进行分析。网络药理学发现,瓜蒌中schottenol等12个化合物通过多靶点、多生物途径及多通路方式协同发挥抗MIRI作用,涉及ERK2(extracellular regulated protein kinase 2,ERK2)、JNK1(c-jun-N-terminal kinase-1,JNK1)、p38MAPK等靶点蛋白及MAPK等信号通路。Western blot结果显示,瓜蒌滴丸预处理MIRI大鼠后,MAPK信号通路相关蛋白p-ERK1/2表达呈剂量依赖性上调,p-p38MAPK、p-JNK1表达呈剂量依赖性下调,与模型组比较,中、高剂量组(1.0、2.0 g·kg-1)的ERK1/2、JNK1及p38MAPK蛋白磷酸化表达均有显著性差异(P<0.01),瓜蒌滴丸可通过调控MAPK信号通路的ERK1/2、JNK1、p38MAPK靶点蛋白及其磷酸化发挥抗大鼠MIRI作用。本文运用网络药理学阐释了瓜蒌抗MIRI的作用靶点和通路并进行了验证,为深入探讨瓜蒌抗MIRI的作用机制提供了依据。
关键词:    瓜蒌      网络药理学      心肌缺血再灌注损伤      MAPK信号通路     
Predicting and validating the mechanism of Trichosanthes mediated anti-myocardial ischemia-reperfusion injury by network pharmacology
ZOU Chun-cai, HONG Guo-jun, YAN Hai-yan
Pharmacy School of Wannan Medical College, Wuhu 241002, China
Abstract:
Network pharmacology and rat ischemia-reperfusion injury (MIRI) model was used to analyze the mechanism of cardiac protection by Trichosanthes. The animal experiments were approved by the Medical Ethics Committee of Wannan Medical College. Compounds were screened by TCMSP database and TCM Database@Taiwan according to oral bioavailability (OB > 30%) and drug like activity (DL > 0.18). The PDBID value of the compound (Z'-score < 0.5) was obtained in DRAR-CPI database and converted into a target protein by UniProt database. Human genes of target proteins were identified using the term "myocardial ischemia reperfusion injury" as the keyword through the CoolGeN database. GOTERM_BP _DIRECT enrichment analysis of target proteins related to MIRI and KEGG PATHWAY annotation analysis were performed using the DAVID database. The component-target protein-signal pathway network was constructed using Giphi0.9.2 software. The expression of mitogen-activated protein kinase (MAPK) signaling pathway-related proteins in MIRI rats pretreated with Trichosanthes (0.2, 1.0 and 2.0 g·kg-1) was analyzed by Western blot with compound Danshen (85.05 mg·kg-1) as a positive control. Network pharmacology found that 12 compounds, including schottenol in Trichosanthes, synergistically inhibit MIRI through multiple targets or biological pathways, involving target proteins such as extracellular regulated protein kinase 2 (ERK2), c-jun-N-terminal kinase-1 (JNK1) and p38MAPK in MAPK signaling pathways. Western blot results showed that phosphorylation of ERK1/2 was dose-dependently up-regulated in MIRI rats pretreated with Trichosanthes, while the level of p38MAPK or JNK1 phosphorylation was down-regulated in a dose-dependent manner. Compared with the control group, phosphorylation of ERK1/2, JNK1 and p38MAPK protein showed significant difference in medium and high dose groups (1.0 and 2.0 g·kg-1) (P<0.01). Therefore, Trichosanthes could play an anti-MIRI role by regulating phosphorylation of ERK1/2, JNK1 and p38MAPK proteins in rats. In conclusion, the targets and pathways of Trichosanthes on anti-MIRI were revealed by network pharmacology and verified in rat MIRI model, providing the scientific basis for further study on the mechanism of Trichosanthes for cardiac protection.
Key words:    Trichosanthes    network pharmacology    myocardial ischemia reperfusion injury    MAPK signaling pathway   
收稿日期: 2018-11-15
DOI: 10.16438/j.0513-4870.2018-1031
基金项目: 安徽高校省级自然科学研究重大项目(KJ2015ZD41,KJ2016SD60).
通讯作者: 鄢海燕,Tel:86-553-3932185,E-mail:yhy0801@126.com
Email: yhy0801@126.com
相关功能
PDF(2724KB) Free
打印本文
0
作者相关文章
邹纯才  在本刊中的所有文章
洪国君  在本刊中的所有文章
鄢海燕  在本刊中的所有文章

参考文献:
[1] China Pharmacopoeia Committee. Chinese Pharmacopoeia Vol Ⅰ (中国药典. 一部)[S]. Beijing:China Medical Science Press, 2015:112.
[2] Zou CC, Zong QN, Yan HY. Study on the spectrum-activity relationship of Trichosanthis Fructus and Trichosanthes Strip Pieces on rat anti-myocardial ischemia-reperfusion injury[J]. China J Chin Mater Med (中国中药杂志), 2018, 43:92-99.
[3] Zou CC, Yan HY, Wei ML. Study of the anti-heart failure mechanisms of compatibility of Gualou with Xiebai in basis of network pharmacology[J]. Acta Pharm Sin (药学学报), 2018, 53:1406-1413.
[4] Wu D, Gao Y, Xiang H, et al. Exploration into mechanism of antidepressant of Bupleuri radix based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2018, 53:210-219.
[5] Sun LM, Liu LF, Zhu HX, et al. Network pharmacology-based study on intervention mechanism of Huanglian Jiedu decoction in the treatment of Alzheimer's disease[J]. Acta Pharm Sin (药学学报), 2017, 52:1268-1275.
[6] Liu DL, Qu GX, Wang NL, et al. Antiplatelet aggregation constituents from Trichosanthes kirilowii[J]. Chin Tradit Herb Drugs (中草药), 2004, 35:1334-1336.
[7] Yan Z, Qiu M, Guo XH, et al. Effect of extractive of Pericarpium Trichosanthis on cell cycle of rat vascular smooth cell proliferation induced by PDGF-BB[J]. Chin J Arterioscler (中国动脉硬化杂志), 2012, 20:899-902.
[8] Liu Y. EPT Protects against Low-density Lipoprotein-induced Endothelial Dysfunction by DDAH/ADMA Pathway (瓜蒌皮提取物对低密度脂蛋白所致血管内皮功能障碍的保护作用与DDAH/ADMA途径的关系)[D]. Hengyang:University of South China, 2010.
[9] Tan B, Liu Y, Gu B, et al. Protective effect of EPT against damages of the endothelium induced by low-density lipoprotein in rats[J]. Mod Med J Chin (中国现代医药杂志), 2010, 12:9-11.
[10] Liu SY, Gu B, Lu XH, et al. Effects of extractive Pericarpium Trichosanthes on apoptosis of HUVECs induced by high glucose[J]. Chin Pharmacol Bull (中国药理学通报), 2015, 31:988- 993.
[11] Wang DM. Experimental Studies on Effects and Mechanisms of Extract of Trichosanthes Kirilowii Pericarp in Anti-atherosclerosis (瓜蒌皮提取液的抗动脉粥样硬化作用及机制的实验研究)[D]. Beijing:Peking University, 2008.
[12] Wang HJ, Ke Y, Ye G. Bioactivity-guided isolation of anti-angiotensin converting enzyme constituents from Trichosanthis Pericarpium[J]. China J Chin Mater Med (中国中药杂志), 2017, 42:3131-3135.
[13] Zhao QT. Protective effect of Trichosanthes pericarpium injection on hypoxic-ischemic endothelial progenitor cells[J]. Chin Tradit Pat Med (中成药), 2015, 37:247-251.
[14] Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades[J]. Adv Cancer Res, 1998, 74:49-139.
[15] Irving EA, Bamford M. Role of mitogen-and stress activated kinases in ischemic injury[J]. J Cereb Blood Flow Metab, 2002, 22:631-647.
[16] Tao JP, Zhu W, Li YP, et al. Apelin-13 protects the heart against ischemia-reperfusion injury through inhibition of ER-dependent apoptotic pathways in a time-dependent fashion[J]. Am J Physiol Heart Circ Physiol, 2011, 301:H1471-H1486.
[17] Bogoyevitch MA, Ngoei KR, Zhao TT, et al. C-Jun N-terminal kinase (JNK) signaling:recent advances and challenges[J]. Biochim Biophys Acta, 2010, 1804:463-475.
相关文献:
1.邹纯才, 鄢海燕, 魏美玲.基于网络药理学分析瓜蒌薤白配伍抗心力衰竭的作用机制研究[J]. 药学学报, 2018,53(9): 1406-1413