药学学报, 2019, 54(7): 1303-1311
引用本文:
李佳琪, 秦璐, 郑煌亮, 李晓然, MICHAEL Moehwald, 陈霖, 张予阳, 毛世瑞. 聚乙二醇磷脂包裹的聚乳酸羟基乙酸微球防止肺泡巨噬细胞吞噬[J]. 药学学报, 2019, 54(7): 1303-1311.
LI Jia-qi, QIN Lu, ZHENG Huang-liang, LI Xiao-ran, MICHAEL Moehwald, CHEN Lin, ZHANG Yu-yang, MAO Shi-rui. PEGylated phospholipid-coated polylactic acid-glycolic acid microspheres to escape the phagocytosis of alveolar macrophages[J]. Acta Pharmaceutica Sinica, 2019, 54(7): 1303-1311.

聚乙二醇磷脂包裹的聚乳酸羟基乙酸微球防止肺泡巨噬细胞吞噬
李佳琪1, 秦璐1, 郑煌亮1, 李晓然2, MICHAEL Moehwald3, 陈霖4, 张予阳2, 毛世瑞1
1. 沈阳药科大学药学院, 辽宁 沈阳 110016;
2. 沈阳药科大学生命科学与生物制药学院, 辽宁 沈阳 110016;
3. 德国拜耳公司化学与药物研发部, 德国 D-42117;
4. 德国拜耳公司化学与药物研发部, 北京 100020
摘要:
聚乳酸-羟基乙酸共聚物(polylactic acid-glycolic acid,PLGA)微球体系在肺部缓控释递药系统中具有独特优势。然而,肺巨噬细胞的吞噬清除极大地限制了药物在肺深部的长期滞留。为规避肺巨噬细胞清除作用,本文设计了一种经聚乙二醇-二硬脂酰磷脂酰乙醇胺(polyethylene glycol-distearoyl-glycero-phosphoethanolamine,PEG-DSPE)包裹的PLGA微球,并探究了PEG-DSPE链长及比例对巨噬细胞摄取的影响。以香豆素-6为荧光探针,经膜乳化联合溶剂挥发法制备了各PLGA微球制剂,粒径控制为3~5 μm、包封产率大于90%。在细胞液中孵育48 h后,荧光素体外泄漏量低于1.5%,排除了游离荧光素对细胞摄取的干扰。选用鼠源性巨噬细胞RAW264.7进行体外细胞实验。细胞毒性实验表明各制剂对细胞均无毒性。细胞摄取实验结果显示,与未包裹制剂相比,高低比例(PEG-DSPE/PLGA 1:1、0.25:1)PEG5000-DSPE、PEG10000-DSPE包裹均可显著减弱巨噬细胞对粒子的吞噬作用。对于PEG2000-DSPE包裹微球,可通过增加PEG在粒子表面的比例达到逃逸巨噬细胞吞噬的效果。综上,PEG-DSPE链长及比例是影响巨噬细胞摄取的关键因素,在肺部缓控释递药系统中,可通过选用高分子量PEG-DSPE(PEG5000-DSPE、PEG10000-DSPE)或高比例(PEG-DSPE/PLGA 1:1)的PEG2000-DSPE包裹微球,达到逃逸肺巨噬细胞吞噬、延长药物肺内滞留的效果。
关键词:    药物递送系统      吸入制剂      聚乙二醇-二硬脂酰磷脂酰乙醇胺      聚乳酸-羟基乙酸共聚物      吞噬     
PEGylated phospholipid-coated polylactic acid-glycolic acid microspheres to escape the phagocytosis of alveolar macrophages
LI Jia-qi1, QIN Lu1, ZHENG Huang-liang1, LI Xiao-ran2, MICHAEL Moehwald3, CHEN Lin4, ZHANG Yu-yang2, MAO Shi-rui1
1. School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China;
2. School of Life Sciences and Biological Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China;
3. Chemical and Pharmaceutical Development, Bayer AG D-42117, Germany;
4. Chemical and Pharmaceutical Development, Bayer AG, Beijing 100020, China
Abstract:
Microspheres based on polylactic acid-glycolic acid (PLGA) copolymer have unique advantages in pulmonary controlled drug delivery. However, the clearance mechanism dominated by lung macrophage phagocytosis greatly limits the long-term retention of drugs in the deep lung. In order to avoid the scavenging effect of lung macrophages, the PLGA microspheres coated by polyethylene glycol-distearoyl-glycero-phosphoethanolamine (PEG-DSPE) was designed in this study, and the effect of chain length of PEG-DSPE and its ratio on the macrophage uptake was investigated. With coumarin 6 as a fluorescent probe, the coumarin 6-loaded PLGA microspheres was prepared by premix membrane emulsification/solvent evaporation. The particle size was controlled to 3-5 μm and the encapsulation efficiency was over 90%. After incubation in the cell culture fluid for 48 h, the in vitro leakage of fluorescein from the microspheres was less than 1.5%, eliminating the interference of free fluorescein on the cellular uptake. Murine macrophages RAW264.7 cell line was selected for the in vitro cell study. The preparations showed little toxicity to cells in the cytotoxicity study. Results of the macrophage uptake study showed that PEG5000-DSPE and PEG10000-DSPE coated groups with both high and low proportions (PEG-DSPE/PLGA 1:1, 0.25:1) could significantly reduce the phagocytosis of macrophages to microspheres compared with the uncoated PLGA group. For PEG2000-DSPE coated microspheres, the effect of escaping macrophage phagocytosis could be achieved by increasing the ratio of polyethylene glycol (PEG) on the surface of particles. Overall, the chain length of PEG-DSPE and its ratio are the key factors affecting the macrophage uptake. In pulmonary controlled drug delivery, high molecular weight of PEG-DSPE (PEG5000-DSPE and PEG10000-DSPE) and the high ratio (PEG-DSPE/PLGA 1:1) of PEG2000-DSPE can be selected to escape the phagocytosis of alveolar macrophages and prolong the drug retention in the lungs.
Key words:    drug delivery system    inhalation    polyethylene glycol-distearoylphosphatidylethanolamine    polylactic acid-polyglycolic acid copolymer    phagocytosis   
收稿日期: 2019-04-29
DOI: 10.16438/j.0513-4870.2019-0342
基金项目: 国家"重大新药创制"科技重大专项资助项目(2017ZX09201-002).
通讯作者: 毛世瑞,Tel/Fax:86-24-43520523,E-mail:maoshirui@syphu.edu.cn
Email: maoshirui@syphu.edu.cn
相关功能
PDF(6737KB) Free
打印本文
0
作者相关文章
李佳琪  在本刊中的所有文章
秦璐  在本刊中的所有文章
郑煌亮  在本刊中的所有文章
李晓然  在本刊中的所有文章
MICHAEL Moehwald  在本刊中的所有文章
陈霖  在本刊中的所有文章
张予阳  在本刊中的所有文章
毛世瑞  在本刊中的所有文章

参考文献:
[1] Larsson K, Menzies-Gow A, Panettieri Jr R. Severe asthma:challenges and precision approaches to therapy[J]. Pulm Ther, 2018, 2:139-152.
[2] Mehta P. Dry powder inhalers:a focus on advancements in novel drug delivery systems[J]. J Drug Deliv, 2016, 2016:8290963.
[3] Dhand R. Aerosol therapy for asthma[J]. Curr Opin Pulm Med, 2000, 6:59-70.
[4] Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs[J]. Adv Drug Deliv Rev, 2014, 75:81-91.
[5] Liang ZL, Ni R, Zhou JY, et al. Recent advances in controlled pulmonary drug delivery[J]. Drug Discov Today, 2015, 20:380-389.
[6] Ni R, Muenster U, Zhao J, et al. Exploring polyvinylpyrrolidone in the engineering of large porous PLGA microparticles via single emulsion method with tunable sustained release in the lung:in vitro and in vivo characterization[J]. J Control Release, 2017, 249:11-22.
[7] Zhang L, Yang LL, Zhang XF, et al. Sustained therapeutic efficacy of budesonide-loaded chitosan swellable microparticles after lung delivery:influence of in vitro release, treatment interval and dose[J]. J Control Release, 2018, 283:163-174.
[8] Weers JG, Miller DP. Formulation design of dry powders for inhalation[J]. J Pharm Sci, 2015, 104:3259-3288.
[9] Kawakami K, Sumitani C, Yoshihashi Y, et al. Investigation of the dynamic process during spray-drying to improve aerodynamic performance of inhalation particles[J]. Int J Pharm, 2010, 390:250-259.
[10] Mowat AM, Scott CL, Bain CC. Barrier-tissue macrophages:functional adaptation to environmental challenges[J]. Nat Med, 2017, 23:1258-1270.
[11] Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery[J]. Adv Drug Deliv Rev, 2016, 99:28-51.
[12] Guichard MJ, Leal T, Vanbever R. PEGylation, an approach for improving the pulmonary delivery of biopharmaceuticals[J]. Curr Opin Colloid Interface Sci, 2017, 31:43-50.
[13] Luo T, Loira-Pastoriza C, Patil HP, et al. PEGylation of paclitaxel largely improves its safety and anti-tumor efficacy following pulmonary delivery in a mouse model of lung carcinoma[J]. J Control Release, 2016, 239:62-71.
[14] Muralidharan P, Mallory E, Malapit M, et al. Inhalable PEGylated phospholipid nanocarriers and PEGylated therapeutics for respiratory delivery as aerosolized colloidal dispersions and dry powder inhalers[J]. Pharmaceutics, 2014, 6:333-353.
[15] Ziffels S, Bemelmans NL, Durham PG, et al. In vitro dry powder inhaler formulation performance considerations[J]. J Control Release, 2015, 199:45-52.
[16] Liang ZL, Wang XH, Ni R, et al. Preparation of budesonide sustained-release dry powder for inhalation and influence of lactose content[J]. Acta Pharm Sin (药学学报), 2015, 50:1180-1185.
[17] Takami T, Murakami Y. Development of PEG-PLA/PLGA microparticles for pulmonary drug delivery prepared by a novel emulsification technique assisted with amphiphilic block copolymers[J]. Colloids Surf B Biointerfaces, 2011, 87:433-438.
[18] Gordon S. Phagocytosis:an immunobiologic process[J]. Immunity, 2016, 44:463-475.
[19] Vladisavljević GT. Structured microparticles with tailored properties produced by membrane emulsification[J]. Adv Colloid Interface Sci, 2015, 225:53-87.
[20] Rivolta I, Panariti A, Lettiero B, et al. Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles[J]. J Physiol Pharmacol, 2011, 62:45-53.
[21] Ahmadian S, Barar J, Saei AA, et al. Cellular toxicity of nanogenomedicine in MCF-7 cell line:MTT assay[J]. J Vis Exp, 2009, 26:1191-1196.
[22] Hittinger M, Juntke J, Kletting S, et al. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models[J]. Adv Drug Deliv Rev, 2015, 85:44-56.
[23] Zheng HL, Li JQ, Luo X, et al. Murine RAW264.7 cells as cellular drug delivery carriers for tumor therapy:a good idea?[J]. Cancer Chemother Pharmacol, 2019, 83:361-374.
[24] Rasola A, Geuna M. A flow cytometry assay simultaneously detects independent apoptotic parameters[J]. Cytometry, 2001, 45:151-157.
[25] Badkas A, Frank E, Zhou Z, et al. Modulation of in vitro phagocytic uptake and immunogenicity potential of modified Herceptin®-conjugated PLGA-PEG nanoparticles for drug delivery[J]. Colloids Surf B Biointerfaces, 2018, 162:271-278.
[26] Xu Y, Shi L, Deng YH. Effect of polyethylene glycol-lipid derivatives on the stability of grafted liposomes[J]. Acta Pharm Sin (药学学报), 2011, 46:1178-1186.
[27] Perry JL, Reuter KG, Kai MP, et al. PEGylated PRINT nanoparticles:the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics[J]. Nano Lett, 2012, 12:5304-5310.
[28] Knop K, Hoogenboom R, Fischer D, et al. Poly(ethylene glycol) in drug delivery:pros and cons as well as potential alternatives[J]. Angew Chem Int Ed, 2010, 49:6288-6308.
[29] Youn YS, Kwon MJ, Na DH, et al. Improved intrapulmonary delivery of site-specific PEGylated salmon calcitonin:optimization by PEG size selection[J]. J Control Release, 2008, 125:68-75.
[30] Mehta D, Leong N, Mcleod VM, et al. Reducing dendrimer generation and PEG chain length increases drug release and promotes anticancer activity of PEGylated polylysine dendrimers conjugated with doxorubicin via a cathepsin-cleavable peptide linker[J]. Mol Pharm, 2018, 15:4568-4576.
[31] Benhabbour SR, Sheardown H, Adronov A. Protein resistance of PEG-functionalized dendronized surfaces:effect of PEG molecular weight and dendron generation[J]. Macromolecules, 2008, 41:4817-4823.