药学学报, 2019, 54(8): 1348-1355
引用本文:
甄俊峰, 鄢双全, 李雨竹, 谢建平. 鞘氨醇-1-磷酸及其受体在结核分枝杆菌感染和抗生素研发中的作用[J]. 药学学报, 2019, 54(8): 1348-1355.
ZHEN Jun-feng, YAN Shuang-quan, LI Yu-zhu, XIE Jian-ping. The roles of sphingosine-1-phosphate and its receptor in Mycobacterium tuberculosis infection and novel antibiotics discovery[J]. Acta Pharmaceutica Sinica, 2019, 54(8): 1348-1355.

鞘氨醇-1-磷酸及其受体在结核分枝杆菌感染和抗生素研发中的作用
甄俊峰, 鄢双全, 李雨竹, 谢建平
西南大学生命科学学院, 现代生物医药研究所, 三峡库区生态环境与生物资源省部共建国家重点实验室培育基地, 重庆 400715
摘要:
结核病仍是全球关注的重大公共卫生问题,这与其耐药及感染后的持留和免疫逃逸有关。鞘脂类生物活性分子参与多个重要的病理生理过程。鞘氨醇-1-磷酸是鞘脂类代谢的关键产物,能够通过自分泌/旁分泌的方式发挥作用。鞘氨醇-1-磷酸调节T细胞和结核分枝杆菌感染过程中多种抗原呈递细胞,促进单核细胞抗原的加工和表达,促进吞噬溶酶体的成熟,还可以调控Ca2+稳态以及参与巨噬细胞自噬等过程,抑制结核分枝杆菌在宿主细胞内的存活和生长,有效降低结核菌感染小鼠肺的损伤。外源添加鞘氨醇-1-磷酸,能够减少结核分枝杆菌感染小鼠肺和脾的分枝杆菌量。本文综述了鞘氨醇-1-磷酸及其受体调控网络,阐述了鞘氨醇-1-磷酸在抑制结核分枝杆菌感染宿主细胞后存活过程的具体机制,旨在为结核病治疗寻找新的防控靶标。
关键词:    何首乌      UDP-L-鼠李糖      UDP-鼠李糖合成酶      功能鉴定      结核分枝杆菌      鞘氨醇-1-磷酸      抗原加工      调控机制      结核病      耐药     
The roles of sphingosine-1-phosphate and its receptor in Mycobacterium tuberculosis infection and novel antibiotics discovery
ZHEN Jun-feng, YAN Shuang-quan, LI Yu-zhu, XIE Jian-ping
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing 400715, China
Abstract:
Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis) infection remains a major public health problem of global concern, largely due to antibiotics resistance, persistence and immune evasion. Sphingolipid bioactive molecules are involved in several important pathophysiological processes. Sphingosine-1-phosphate is a key product of sphingolipid metabolism, and can play a role in two manners:autocrine and/or paracrine. Sphingosine-1-phosphate regulates T cells and a variety of antigen-presenting cells during M. tuberculosis infection, promotes antigen processing and expression in monocytes, is involved in the maturation of phagolysosome, regulates Ca2+ homeostasis, participates in the autophagy of macrophages, inhibits the survival and proliferation of M. tuberculosis within host cells, and effectively reduces the necrosis of the mouse lungs infected by M. tuberculosis. Injection of 20 nmol per mouse sphingosine-1-phosphate inhibited up to 47% of mycobacterial growth in the lung and spleen of mice infected by M. tuberculosis. In this paper, sphingosine-1-phosphate, its receptors and regulatory network were reviewed, and the specific mechanism of sphingosine-1-phosphate inhibiting the survival of M. tuberculosis-infected host cells was elaborated. This will provide novel insights into the new targets for tuberculosis prevention and treatment.
Key words:    Fallopia multiflora    UDP-rhamnose    UDP rhamnose synthase    function characterization    Mycobacterium tuberculosis    sphingosine-1-phosphate    antigen processing    regulatory mechanism    tuberculosis    drug resistance   
收稿日期: 2019-01-28
DOI: 10.16438/j.0513-4870.2019-0090
基金项目: 国家自然科学基金资助项目(81871182,81371851).
通讯作者: 谢建平,Tel:86-23-68367108,E-mail:georgex@swu.edu.cn
Email: georgex@swu.edu.cn
相关功能
PDF(552KB) Free
打印本文
0
作者相关文章
刘露  在本刊中的所有文章
周良云  在本刊中的所有文章
张春荣  在本刊中的所有文章
王浩  在本刊中的所有文章
刘长征  在本刊中的所有文章
杨全  在本刊中的所有文章
甄俊峰  在本刊中的所有文章
鄢双全  在本刊中的所有文章
李雨竹  在本刊中的所有文章
谢建平  在本刊中的所有文章

参考文献:
[1] World Health Organization. Global tuberculosis report 2018[EB/OL]. https://apps.who.int/iris/handle/10665/274453.
[2] Tiberi S, du Plessis N, Walzl G, et al. Tuberculosis:progress and advances in development of new drugs, treatment regimens, and host-directed therapies[J]. Lancet Infect Dis, 2018, 18:e183-e198.
[3] Dheda K, Gumbo T, Maartens G, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrugresistant, extensively drug-resistant, and incurable tuberculosis[J]. Lancet Respir Med, 2017, 5:291-360.
[4] Dwivedi VP, Bhattacharya D, Singh M, et al. Allicin enhances antimicrobial activity of macrophages during Mycobacterium tuberculosis infection[J]. J Ethnopharmacol, 2018. DOI:10.1016/j.jep.2018.12.008.
[5] Amaral EP, Lasunskaia EB, D'império-Lima MR. Innate immunity in tuberculosis:how the sensing of mycobacteria and tissue damage modulates macrophage death[J]. Microbes Infect, 2016, 18:11-20.
[6] da Costa AC, de Resende DP, Santos BPO, et al. Modulation of macrophage responses by CMX, a fusion protein composed of Ag85c, MPT51, and HspX from Mycobacterium tuberculosis[J]. Front Microbiol, 2017, 8:623.
[7] Agnihotri J, Singh S, Wais M, et al. Macrophage targeted cellular carriers for effective delivery of anti-tubercular drugs[J]. Recent Pat Antiinfect Drug Discov, 2017, 12:162-183.
[8] Emanuela G, Santucci MB, Michela S, et al. Natural lysophospholipids reduce Mycobacterium tuberculosis-induced cytotoxicity and induce anti-mycobacterial activity by a phagolysosome maturation-dependent mechanism in A549 type Ⅱ alveolar epithelial cells[J]. Immunology, 2010, 129:125-132.
[9] Santucci MB, Greco E, Spirito MD, et al. Sphingosine 1-phosphate promotes antigen processing and presentation to CD4+ T cells in Mycobacterium tuberculosis-infected monocytes[J]. Biochem Biophys Res Commun, 2007, 361:687-693.
[10] Barnawi J, Tran H, Jersmann H, et al. Potential link between the sphingosine-1-phosphate (S1P) system and defective alveolar macrophage phagocytic function in chronic obstructive pulmonary disease (COPD)[J]. PLoS One, 2015, 10:e0122771.
[11] Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and disease[J]. Nat Rev Mol Cell Biol, 2018, 19:175-191.
[12] Meyer zu Heringdorf D, Lass H, Alemany R, et al. Sphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors[J]. EMBO J, 1998, 17:2830-2837.
[13] Gonzalez L, Qian AS, Tahir U, et al. Sphingosine-1-phosphate receptor 1, expressed in myeloid cells, slows diet-induced atherosclerosis and protects against macrophage apoptosis in Ldlr KO mice[J]. Int J Mol Sci, 2017, 18:2721.
[14] Blaho VA, Hla T. An update on the biology of sphingosine 1-phosphate receptors[J]. J Lipid Res, 2014, 55:1596-1608.
[15] Brunkhorst R, Vutukuri R, Pfeilschifter W. Fingolimod for the treatment of neurological diseases-state of play and future perspectives[J]. Front Cell Neurosci, 2014, 8:283.
[16] Sinha P, Gupta A, Prakash P, et al. Differentiation of Mycobacterium tuberculosis complex from non-tubercular mycobacteria by nested multiplex PCR targeting IS6110, MTP40 and 32 kD alpha antigen encoding gene fragments[J]. BMC Infect Dis, 2016, 16:123.
[17] Custódio R, McLean CJ, Scott AE, et al. Characterization of secreted sphingosine-1-phosphate lyases required for virulence and intracellular survival of Burkholderia pseudomallei[J]. Mol Microbiol, 2016, 102:1004-1019.
[18] Kleuser B. Divergent role of sphingosine 1-phosphate in liver health and disease[J]. Int J Mol Sci, 2018, 19:722.
[19] Kumar A, Byun HS, Bittman R, et al. The sphingolipid degradation product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-dependent manner[J]. Cell Signal, 2011, 23:1144-1152.
[20] Arish M, Husein A, Kashif M, et al. Sphingosine-1-phosphate signaling:unraveling its role as a drug target against infectious diseases[J]. Drug Discov Today, 2016, 21:133-142.
[21] Nishi T, Kobayashi N, Hisano Y, et al. Molecular and physiological functions of sphingosine 1-phosphate transporters[J]. Biochim Biophys Acta, 2014, 1841:759-765.
[22] Don-Doncow N, Zhang Y, Matuskova H, et al. The emerging alliance of sphingosine-1-phosphate signaling and immune cells:from basic mechanisms to implications in hypertension[J]. Br J Pharmacol, 2018. DOI:10.1111/bph.14381.
[23] Sharma L, Prakash H. Sphingolipids are dual specific drug targets for the management of pulmonary infections:perspective[J]. Front Immunol, 2017, 8:378.
[24] Burg N, Swendeman S, Worgall S, et al. Sphingosine-1 phosphate receptor-1 signaling maintains endothelial cell barrier function and protects against immune complex-induced vascular injury[J]. Arthritis Rheumatol, 2018, 70:1879-1889.
[25] Cannavo A, Liccardo D, Komici K, et al. Sphingosine kinases and sphingosine 1-phosphate receptors:signaling and actions in the cardiovascular system[J]. Front Pharmacol, 2017, 8:556.
[26] Pyne NJ, McNaughton M, Boomkamp S, et al. Role of sphingosine 1-phosphate receptors, sphingosine kinases and sphingosine in cancer and inflammation[J]. Adv Biol Regul, 2016, 60:151-159.
[27] Pyne S, Adams DR, Pyne NJ. Sphingosine 1-phosphate and sphingosine kinases in health and disease:recent advances[J]. Prog Lipid Res, 2016, 62:93-106.
[28] Chiba K, Kataoka H, Seki N, et al. Fingolimod (FTY720), sphingosine 1-phosphate receptor modulator, shows superior efficacy as compared with interferon-β in mouse experimental autoimmune encephalomyelitis[J]. Int Immunopharmacol, 2011, 11:366-372.
[29] Huang JK, Zhang T, Wang HM, et al. Treatment of experimental autoimmune myasthenia gravis rats with FTY720 and its effect on Th1/Th2 cells[J]. Mol Med Rep, 2018, 17:7409-7414.
[30] Li Y, Hu TH, Chen TJ, et al. Combination treatment of FTY720 and cisplatin exhibits enhanced antitumour effects on cisplatinresistant non-small lung cancer cells[J]. Oncol Rep, 2018, 39:565-572.
[31] Shi DY, Tian TG, Yao S, et al. FTY720 attenuates behavioral deficits in a murine model of systemic lupus erythematosus[J]. Brain Behav Immun, 2018, 70:293-304.
[32] Velmurugan BK, Lee CH, Chiang SL, et al. PP2A deactivation is a common event in oral cancer and reactivation by FTY720 shows promising therapeutic potential[J]. J Cell Physiol, 2018, 233:1300-1311.
[33] Jeyanathan M, Yao YS, Afkhami S, et al. New tuberculosis vaccine strategies:taking aim at un-natural immunity[J]. Trends Immunol, 2018, 39:419-433.
[34] Bigaud M, Dincer Z, Bollbuck B, et al. Pathophysiological consequences of a break in S1P1-dependent homeostasis of vascular permeability revealed by S1P1 competitive antagonism[J]. PLoS One, 2016, 11:e0168252.
[35] Bryan AM, Del Poeta M. Sphingosine-1-phosphate receptors and innate immunity[J]. Cell Microbiol, 2018, 20:e12836.
[36] Krause A, Brossard P, D'Ambrosio D, et al. Population pharmacokinetics and pharmacodynamics of ponesimod, a selective S1P1 receptor modulator[J]. J Pharmacokinet Pharmacodyn, 2014, 41:261-278.
[37] Peyrin-Biroulet L, Christopher R, Trokan L, et al. P369 safety and lymphocyte-lowering properties of etrasimod (APD334), an oral, potent, next-generation, selective S1P receptor modulator, after dose escalation in healthy volunteers[J]. J Crohns Colitis, 2017, 11:S265-S266.
[38] Sun N, Keep RF, Hua Y, et al. Critical role of the sphingolipid pathway in stroke:a review of current utility and potential thera-peutic targets[J]. Transl Stroke Res, 2016, 7:420-438.
[39] Yamamoto R, Aoki T, Koseki H, et al. A sphingosine 1phosphate receptor type 1 agonist, ASP4058, suppresses intracranial aneurysm through promoting endothelial integrity and blocking macrophage transmigration[J]. Br J Pharmacol, 2017, 174:2085-2101.
[40] Onuma T, Tanabe K, Kito Y, et al. Sphingosine 1-phosphate (S1P) suppresses the collagen-induced activation of human platelets via S1P4 receptor[J]. Thromb Res, 2017, 156:91-100.
[41] Kurata H, Kusumi K, Otsuki K, et al. Discovery of a 1-methyl-3, 4-dihydronaphthalene-based sphingosine-1-phosphate (S1P) receptor agonist ceralifimod (ONO-4641). A S1P1 and S1P5 selective agonist for the treatment of autoimmune diseases[J]. J Med Chem, 2017, 60:9508-9530.
[42] Yamamoto R, Okada Y, Hirose J, et al. ASP4058, a novel agonist for sphingosine 1-phosphate receptors 1 and 5, ameliorates rodent experimental autoimmune encephalomyelitis with a favorable safety profile[J]. PLoS One, 2014, 9:e110819.
[43] Goetzl EJ, Rosen H. Regulation of immunity by lysosphingolipids and their G protein-coupled receptors[J]. J Clin Invest, 2004, 114:1531-1537.
[44] Tran TH, Tran TTP, Nguyen HT, et al. Nanoparticles for dendritic cell-based immunotherapy[J]. Int J Pharm, 2018, 542:253-265.
[45] Jin H, Han J, Resing D, et al. Synthesis and in vitro characterization of a P2×7 radioligand[123I]TZ6019 and its response to neuroinflammation in a mouse model of Alzheimer disease[J]. Eur J Pharmacol, 2017, 820:8-17.
[46] Jin K, Luo ZM, Zhang B, et al. Biomimetic nanoparticles for inflammation targeting[J]. Acta Pharm Sin B, 2018, 8:23-33.
[47] Grenald SA, Doyle TM, Zhang H, et al. Targeting the S1P/S1PR1 axis mitigates cancer-induced bone pain and neuroinflammation[J]. Pain, 2017, 158:1733-1742.
[48] Nagahashi M, Yamada A, Katsuta E, et al. Targeting the SphK1/S1P/S1PR1 axis that links obesity, chronic inflammation and breast cancer metastasis[J]. Cancer Res, 2018, 78:1713-1725.
[49] Suh JH, Saba JD. Sphingosine-1-phosphate in inflammatory bowel disease and colitis-associated colon cancer:the fat's in the fire[J]. Transl Cancer Res, 2015, 4:469-483.
[50] Aytan N, Choi JK, Carreras I, et al. Fingolimod modulates multiple neuroinflammatory markers in a mouse model of Alzheimer's disease[J]. Sci Rep, 2016, 6:24939.
[51] Cuzzocrea S, Doyle T, Campolo M, et al. Sphingosine 1-phosphate receptor subtype 1 as a therapeutic target for brain trauma[J]. J Neurotrauma, 2018, 35:1452-1466.
[52] Jin L, Liu WR, Tian MX, et al. The SphKs/S1P/S1PR1 axis in immunity and cancer:more ore to be mined[J]. World J Surg Oncol, 2016, 14:131.
[53] Liu H, Jin HJ, Yue XY, et al. PET imaging study of S1PR1 expression in a rat model of multiple sclerosis[J]. Mol Imaging Biol, 2016, 18:724-732.
[54] Weichand B, Popp R, Dziumbla S, et al. S1PR1 on tumorassociated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β[J]. J Exp Med, 2017, 214:2695-2713.
[55] Meng H, Lee VM. Differential expression of sphingosine-1-phosphate receptors 1-5 in the developing nervous system[J]. Dev Dyn, 2009, 238:487-500.
[56] Chen YZ, Wang F, Wang HJ, et al. Sphingosine 1 phosphate receptor-1(S1PR1) signaling protects cardiac function by inhibiting cardiomyocyte autophagy[J]. J Geriatr Cardiol, 2018, 15:334-345.
[57] Wang LC, Dudek SM. Regulation of vascular permeability by sphingosine 1-phosphate[J]. Microvasc Res, 2009, 77:39-45.
[58] McVerry BJ, Peng XQ, Hassoun PM, et al. Sphingosine 1-phosphate reduces vascular leak in murine and canine models of acute lung injury[J]. Am J Respir Crit Care Med, 2004, 170:987-993.
[59] Mi JQ, Zhao MM, Yang S, et al. Pharmacokinetics of H002, a novel S1PR1 modulator, and its metabolites in rat blood using liquid chromatography-tandem mass spectrometry[J]. Acta Pharm Sin B, 2016, 6:576-583.
[60] Lorenz JN, Arend LJ, Robitz R, et al. Vascular dysfunction in S1P2 sphingosine 1-phosphate receptor knockout mice[J]. Am J Physiol Regul Integr Comp Physiol, 2007, 292:R440-R446.
[61] Skoura A, Sanchez T, Claffey K, et al. Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina[J]. J Clin Invest, 2007, 117:2506-2516.
[62] Kono M, Belyantseva IA, Skoura A, et al. Deafness and stria vascularis defects in S1P2 receptor-null mice[J]. J Biol Chem, 2007, 282:10690-10696.
[63] Imasawa T, Kitamura HR, Ohkawa R, et al. Unbalanced expression of sphingosine 1-phosphate receptors in diabetic nephropathy[J]. Exp Toxicol Pathol, 2010, 62:53-60.
[64] Oskeritzian CA, Price MM, Hait NC, et al. Essential roles of sphingosine-1-phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema[J]. J Exp Med, 2010, 207:465-474.
[65] Olivera A, Eisner C, Kitamura Y, et al. Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock in mice[J]. J Clin Invest, 2010, 120:1429-1440.
[66] Bassi R, Anelli V, Giussani P, et al. Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors[J]. Glia, 2006, 53:621-630.
[67] Means CK, Brown JH. Sphingosine-1-phosphate receptor signalling in the heart[J]. Cardiovasc Res, 2009, 82:193-200.
[68] Li QF, Wu CT, Guo Q, et al. Sphingosine 1-phosphate induces Mcl-1 upregulation and protects multiple myeloma cells against apoptosis[J]. Biochem Biophys Res Commun, 2008, 371:159-162.
[69] Li CY, Kong YX, Wang H, et al. Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis[J]. J Hepatol, 2009, 50:1174-1183.
[70] Lam A, Prabhu R, Gross CM, et al. Role of apoptosis and autophagy in tuberculosis[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313:L218-L229.
[71] Moruno-Manchon JF, Uzor NE, Ambati CR, et al. Sphingosine kinase 1-associated autophagy differs between neurons and astrocytes[J]. Cell Death Dis, 2018, 9:521.
[72] Garg SK, Volpe E, Palmieri G, et al. Sphingosine 1-phosphate induces antimicrobial activity both in vitro and in vivo[J]. J Infect Dis, 2004, 189:2129-2138.
[73] Garg SK, Santucci MB, Panitti M, et al. Does sphingosine 1-phosphate play a protective role in the course of pulmonary tuberculosis?[J]. Clin Immunol, 2006, 121:260-264.
[74] Garg SK, Valente E, Greco E, et al. Lysophosphatidic acid enhances antimycobacterial activity both in vitro and ex vivo[J]. Clin Immunol, 2006, 121:23-28.
[75] Murata N, Sato K, Kon J, et al. Quantitative measurement of sphingosine 1-phosphate by radioreceptor-binding assay[J]. Anal Biochem, 2000, 282:115-120.
[76] Guyot-Revol V, Innes JA, Hackforth S, et al. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis[J]. Am J Respir Crit Care Med, 2006, 173:803-810.
[77] Mandala S, Hajdu R, Bergstrom J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists[J]. Science, 2002, 296:346-349.
[78] Peng XQ, Hassoun PM, Sammani S, et al. Protective effects of sphingosine 1-phosphate in murine endotoxin-induced inflammatory lung injury[J]. Am J Respir Crit Care Med, 2004, 169:1245-1251.
[79] Berry MPR, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis[J]. Nature, 2010, 466:973-977.
[80] Sali M, Delogu G, Greco E, et al. Exploiting immunotherapy in Mycobacterium tuberculosis-infected mice:sphingosine 1-phosphate treatment results in a protective or detrimental effect depending on the stage of infection[J]. Int J Immunopathol Pharmacol, 2009, 22:175-181.
[81] Malik ZA, Thompson CR, Hashimi S, et al. Cutting edge:Mycobacterium tuberculosis blocks Ca2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase[J]. J Immunol, 2003, 170:2811-2815.
[82] Chandrasekaran P, Saravanan N, Bethunaickan R, et al. Malnutrition:modulator of immune responses in tuberculosis[J]. Front Immunol, 2017, 8:1316.
[83] Teng O, Ang CKE, Guan XL. Macrophage-bacteria interactions-a lipid-centric relationship[J]. Front Immunol, 2017, 8:1836.
[84] Cui CC, Merritt R, Fu LW, et al. Targeting calcium signaling in cancer therapy[J]. Acta Pharm Sin B, 2017, 7:3-17.
[85] Desai NN, Zhang H, Olivera A, et al. Sphingosine-1-phosphate, a metabolite of sphingosine, increases phosphatidic acid levels by phospholipase D activation[J]. J Biol Chem, 1992, 267:23122-23128.
[86] Poerio N, Bugli F, Taus F, et al. Liposomes loaded with bioactive lipids enhance antibacterial innate immunity irrespective of drug resistance[J]. Sci Rep, 2017, 7:45120.
[87] Girón-Calle J, Forman HJ. Phospholipase D and priming of the respiratory burst by H2O2 in NR8383 alveolar macrophages[J]. Am J Respir Cell Mol Biol, 2000, 23:748-754.
[88] Fairbairn IP, Stober CB, Kumararatne DS, et al. ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X7-dependent process inducing bacterial death by phagosome-lysosome fusion[J]. J Immunol, 2001, 167:3300-3307.
[89] Speer A, Sun J, Danilchanka O, et al. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages[J]. Mol Microbiol, 2015, 97:881-897.
[90] Ishitsuka A, Fujine E, Mizutani Y, et al. FTY720 and cisplatin synergistically induce the death of cisplatin-resistant melanoma cells through the downregulation of the PI3K pathway and the decrease in epidermal growth factor receptor expression[J]. Int J Mol Med, 2014, 34:1169-1174.
[91] Maeurer C, Holland S, Pierre S, et al. Sphingosine-1-phosphate induced mTOR-activation is mediated by the E3-ubiquitin ligase PAM[J]. Cell Signal, 2009, 21:293-300.
相关文献:
1.刘露, 周良云, 张春荣, 王浩, 刘长征, 杨全.何首乌中UDP-鼠李糖合成酶基因FmRHM1/2的克隆与鉴定[J]. 药学学报, 2019,54(8): 1515-1523
2.刘雪梅;谢建平.卷曲霉素作用机制和耐药机制的功能基因组学研究进展[J]. 药学学报, 2008,43(8): 788-792