药学学报, 2019, 54(8): 1372-1381
张宝月, 刘艾林, 杜冠华. 能量代谢紊乱对疾病的影响及其潜在药物靶点[J]. 药学学报, 2019, 54(8): 1372-1381.
ZHANG Bao-yue, LIU Ai-lin, DU Guan-hua. Energy metabolism disorder and diseases: from effects to potential targets[J]. Acta Pharmaceutica Sinica, 2019, 54(8): 1372-1381.

张宝月, 刘艾林, 杜冠华
中国医学科学院、北京协和医学院药物研究所, 北京 100050
关键词:    能量代谢      新药发现      潜在靶点      神经退行性疾病      癌症      代谢性疾病      心血管疾病     
Energy metabolism disorder and diseases: from effects to potential targets
ZHANG Bao-yue, LIU Ai-lin, DU Guan-hua
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Cellular energy metabolism disorder caused by dysfunction of nutrient utilization and mitochondrial damage contributes to a variety of diseases, including neurodegenerative diseases, cancer, metabolic diseases, and cardiovascular diseases. Understanding the effects of energy metabolism on diseases will help to improve our knowledge about disease etiology and may serve to develop strategies to delay disease progress. There are many compounds developed for targeting energy metabolism disorders, such as small molecules targeting the 18 kDa transporter (TSPO) for treatment of Alzheimer's disease, glucagon-like peptide-1 analogues for treatment of Parkinson's disease, inhibitors of glucose transporter 1 (GLUT1) and lactate dehydrogenase A for treatment of tumors, the fibroblast growth factors based treatment for type 2 diabetes (T2D), selective ligands of peroxisome proliferator-activated receptor (PPAR)-β/δ for treatment of cardiovascular diseases. We review here the abnormal energy metabolism of common energy metabolism disorder-related diseases, summarize the potential targets that may be used for new drug discovery, and the strategies for alleviating the disease process by improving energy metabolism.
Key words:    energy metabolism    drug discovery    potential target    neurodegenerative disease    cancer    metabolic disease    cardiovascular disease   
收稿日期: 2019-03-09
DOI: 10.16438/j.0513-4870.2019-0161
基金项目: 国家自然科学基金资助项目(81673480);北京市自然基金资助项目(7192134);国家人口健康科学数据共享平台资源专项课题(NCMI-AGD05-201809);协和创新工程(2016-I2M-3-007);“重大新药创制”国家科技重大专项资助项目(2014ZX09507003-002).
通讯作者: 刘艾林,Tel/Fax:86-10-83150885,E-mail:liuailin@imm.ac.cn;杜冠华,Tel/Fax:86-10-63165184,E-mail:dugh@imm.ac.cn
Email: liuailin@imm.ac.cn;dugh@imm.ac.cn
PDF(450KB) Free
张宝月  在本刊中的所有文章
刘艾林  在本刊中的所有文章
杜冠华  在本刊中的所有文章

[1] Rossignol R. Energy metabolism disorders in rare and common diseases. Toward bioenergetic modulation therapy and the training of a new generation of European scientists[J]. Int J Biochem Cell Biol, 2015, 63:2-9.
[2] Davis RL, Liang C, Sue CM. Mitochondrial diseases[J]. Handb Clin Neurol, 2018, 147:125-141.
[3] Mochel F. Triheptanoin for the treatment of brain energy deficit:a 14-year experience:triheptanoin and treatment of brain energy deficit[J]. J Neurosci Res, 2017, 95:2236-2243.
[4] Mergenthaler P, Lindauer U, Dienel GA, et al. Sugar for the brain:the role of glucose in physiological and pathological brain function[J]. Trends Neurosci, 2013, 36:587-597.
[5] Rossi S, Zanier ER, Mauri I, et al. Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage[J]. J Neurol Neurosurg Psychiatry, 2001, 71:448-454.
[6] Cai H, Cong WN, Ji S, et al. Metabolic dysfunction in Alzheimer's disease and related neurodegenerative disorders[J]. Curr Alzheimer Res, 2012, 9:5-17.
[7] Fu W, Jhamandas JH. Role of astrocytic glycolytic metabolism in Alzheimer's disease pathogenesis[J]. Biogerontology, 2014, 15:579-586.
[8] Szablewski L. Glucose transporters in brain:in health and in Alzheimer's disease[J]. J Alzheimers Dis, 2016, 55:1307-1320.
[9] Winkler EA, Nishida Y, Sagare AP, et al. GLUT1 reductions exacerbate Alzheimer's disease vasculoneuronal dysfunction and degeneration[J]. Nat Neurosci, 2015, 18:521-530.
[10] Kuzuya T. Outline of glucose metabolism and its regulations[J]. Nihon Rinsho, 1990, 48 Suppl:51-59.
[11] Velazquez R, Tran A, Ishimwe E, et al. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer's disease[J]. Neurobiol Aging, 2017, 58:1-13.
[12] Pohland M, Pellowska M, Asseburg H, et al. MH84 improves mitochondrial dysfunction in a mouse model of early Alzheimer's disease[J]. Alzheimers Res Ther, 2018, 10:18-29.
[13] Delbarba A, Abate G, Prandelli C, et al. Mitochondrial alterations in peripheral mononuclear blood cells from Alzheimer's disease and mild cognitive impairment patients[J]. Oxid Med Cell Longev, 2016, 2016:5923938.
[14] Pérez MJ, Ponce DP, Osorio-Fuentealba C, et al. Mitochondrial bioenergetics is altered in fibroblasts from patients with sporadic Alzheimer's disease[J]. Front Neurosci, 2017, 11:553-565.
[15] Hroudová J, Singh N, Fišar Z, et al. Progress in drug development for Alzheimer's disease:an overview in relation to mitochondrial energy metabolism[J]. Eur J Med Chem, 2016, 121:774-784.
[16] Zakaria A, Hamdi N, Abdelkader RM. Methylene blue improves brain mitochondrial ABAD functions and decreases Aβ in a neuroinflammatory Alzheimer's disease mouse model[J]. Mol Neurobiol, 2015, 53:1220-1228.
[17] Valaasani KR, Sun Q, Hu G, et al. Identification of human ABAD inhibitors for rescuing Aβ-mediated mitochondrial dys-function[J]. Curr Alzheimer Res, 2014, 11:128-136.
[18] Valasani KR, Hu G, Chaney MO, et al. Structure-based design and synthesis of benzothiazole phosphonate analogues with inhibitors of human ABAD-Aβ for treatment of Alzheimer's disease[J]. Chem Biol Drug Des, 2012, 81:238-249.
[19] Hroch L, Guest P, Benek O, et al. Synthesis and evaluation of frentizole-based indolyl thiourea analogues as MAO/ABAD inhibitors for Alzheimer's disease treatment[J]. Bioorg Med Chem, 2016, 25:1143-1152.
[20] Alam MM, Lee J, Lee SY. Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases[J]. Nucl Med Mol Imaging, 2017, 51:283-296.
[21] Du H, Guo L, Fang F, et al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease[J]. Nat Med, 2008, 14:1097-1105.
[22] Fakharnia F, Khodagholi F, Dargahi L, et al. Prevention of cyclophilin D-mediated mPTP opening using cyclosporine-A alleviates the elevation of necroptosis, autophagy and apoptosisrelated markers following global cerebral ischemia-reperfusion[J]. J Mol Neurosci, 2016, 61:52-60.
[23] Elkamhawy A, Lee J, Park BG, et al. Novel quinazoline-urea analogues as modulators for Aβ-induced mitochondrial dysfunction:design, synthesis, and molecular docking study[J]. Eur J Med Chem, 2014, 84:466-475.
[24] Kim TH, Yang HY, Park BG, et al. Discovery of benzimidazole derivatives as modulators of mitochondrial function:a potential treatment for Alzheimer's disease[J]. Eur J Med Chem, 2017, 125:1172-1192.
[25] Hattingen E, Magerkurth J, Pilatus U, et al. Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson's disease[J]. Brain, 2009, 132:3285-3297.
[26] Stamelou M, Pilatus U, Reuss A, et al. In vivo evidence for cerebral depletion in high-energy phosphates in progressive supranuclear palsy[J]. J Cereb Blood Flow Metab, 2009, 29:861-870.
[27] Vivesbauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy[J]. Autophagy, 2010, 107:378-383.
[28] Poole AC, Thomas RE, Andrews LA, et al. The PINK1/Parkin pathway regulates mitochondrial morphology[J]. Proc Natl Acad Sci U S A, 2008, 105:1638-1643.
[29] Wang X, Winter D, Ashrafi G, et al. PINK1 and parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility[J]. Cell, 2011, 147:893-906.
[30] Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease[J]. Cell, 2016, 144:689-702.
[31] Parker WD Jr, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson's disease frontal cortex[J]. Brain Res, 2008, 1189:215-218.
[32] Surmeier DJ, Halliday GM, Simuni T. Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease[J]. Exp Neurol, 2017, 298:202-209.
[33] Shinde S, Pasupathy K. Respiratory-chain enzyme activities in isolated mitochondria of lymphocytes from patients with Parkinson's disease:preliminary study[J]. Neurol India, 2006, 54:390-393.
[34] Takamatsu Y, Ho G, Koike W, et al. Combined immunotherapy with "anti-insulin resistance" therapy as a novel therapeutic strategy against neurodegenerative diseases[J]. NPJ Parkinsons Dis, 2017, 3:4.
[35] Marino JS, Xu Y, Hill JW. Central insulin and leptin-mediated autonomic control of glucose homeostasis[J]. Trends Endocrinol Metab, 2011, 22:275-285.
[36] Yuan Z, Li D, Feng P, et al. A novel GLP-1/GIP dual agonist is more effective than liraglutide in reducing inflammation and enhancing GDNF release in the MPTP mouse model of Parkinson's disease[J]. Eur J Pharmacol, 2017, 812:82-90.
[37] Liu W, Jalewa J, Sharma M, et al. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease[J]. Neuroscience, 2015, 303:42-50.
[38] Quansah E, Peelaerts W, Langston JW, et al. Targeting energy metabolism via the mitochondrial pyruvate carrier as a novel approach to attenuate neurodegeneration[J]. Mol Neurodegener, 2018, 13:28-39.
[39] Roussakis AA, Piccini P. PET imaging in Huntington's disease[J]. J Huntingtons Dis, 2015, 4:287-296.
[40] Jenkins BG, Rosas HD, Chen YCI, et al. 1H NMR spectroscopy studies of Huntington's disease:correlations with CAG repeat numbers[J]. Neurology, 1998, 50:1357-1365.
[41] Koroshetz WJ, Jenkins BG, Rosen BR, et al. Energy metabolism defects in Huntington's disease and effects of coenzyme Q10[J]. Ann Neurol, 2010, 41:160-165.
[42] Lim D, Fedrizzi L, Tartari M, et al. Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease[J]. J Biol Chem, 2008, 283:5780-5789.
[43] Li XJ, Orr AL, Li S. Impaired mitochondrial trafficking in Huntington's disease[J]. Biochim Biophys Acta, 2010, 1802:62-65.
[44] Agarwal S, Yadav A, Chaturvedi RK. Peroxisome proliferatoractivated receptors (PPARs) as therapeutic target in neurodegenerative disorders[J]. Biochem Biophys Res Commun, 2016, 483:1166-1177.
[45] Gizatullina ZZ, Lindenberg KS, Harjes P, et al. Low stability of Huntington muscle mitochondria against Ca2+, in R6/2 mice[J]. Ann Neurol, 2010, 59:407-411.
[46] Saft C, Zange J, Andrich J, et al. Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's disease[J]. Mov Disord, 2004, 20:674-679.
[47] Cui L, Jeong H, Borovecki F, et al. Transcriptional repression of PGC-1α by mutant Huntingtin leads to mitochondrial dysfunction and neurodegeneration[J]. Cell, 2006, 127:59-69.
[48] Chiang MC, Chen CM, Lee MR, et al. Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma[J]. Hum Mol Genet, 2010, 19:4043-4058.
[49] Chaturvedi RK, Adhihetty P, Shukla S, et al. Impaired PGC-1α function in muscle in Huntington's disease[J]. Hum Mol Genet, 2009, 18:3048-3065.
[50] Phan J, Hickey MA, Zhang P, et al. Adipose tissue dysfunction tracks disease progression in two Huntington's disease mouse models[J]. Hum Mol Genet, 2009, 18:1006-1016.
[51] Nierenberg AA, Ghaznavi SA, Mathias IS, et al. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders[J]. Biol Psychiatry, 2018, 83:761-769.
[52] Huang CL, Wang KC, Yang YC, et al. Gastrodia elata, alleviates mutant Huntingtin aggregation through mitochondrial function and biogenesis mediation[J]. Phytomedicine, 2018, 39:75-84.
[53] Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism[J]. Cell Metab, 2016, 23:27-47.
[54] Warburg O. On the origin of cancer cells[J]. Science, 1956, 123:309-314.
[55] Israelsen WJ, Dayton TL, Davidson SM, et al. PKM2 isoformspecific deletion reveals a differential requirement for pyruvate kinase in tumor cells[J]. Cell, 2013, 155:397-409.
[56] Jung SY, Jeon HK, Choi JS, et al. Reduced expression of FASN through SREBP-1 down-regulation is responsible for hypoxic cell death in HepG2 cells[J]. J Cell Biochem, 2012, 113:3730-3739.
[57] Fukumura D, Xu L, Chen Y, et al. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo[J]. Cancer Res, 2001, 61:6020-6024.
[58] Lu Y, Wang B, Shi Q, et al. Brusatol inhibits HIF-1 signaling pathway and suppresses glucose uptake under hypoxic conditions in HCT116 cells[J]. Sci Rep, 2016, 6:39123.
[59] Masoud GN, Wei L. HIF-1α pathway:role, regulation and intervention for cancer therapy[J]. Acta Pharm Sin B, 2015, 5:378-389.
[60] Zhang H, Gao P, Fukuda R, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity[J]. Cancer Cell, 2007, 11:407-420.
[61] Hodeib AA, Neinaa Y, Zakaria SS, et al. Glucose transporter-1(GLUT-1) expression in psoriasis:correlation with disease severity[J]. Int J Dermatol, 2018, 57:943-951.
[62] Wang T, Ning K, Lu TX, et al. Elevated expression of TrpC5 and GLUT1 is associated with chemoresistance in colorectal cancer[J]. Oncol Rep, 2016, 37:1059-1065.
[63] Koh YW, Lee SJ, Park SY. Differential expression and prognostic significance of GLUT1 according to histologic type of nonsmall-cell lung cancer and its association with volume-dependent parameters[J]. Lung Cancer, 2017, 104:31-37.
[64] Oh S, Kim H, Nam K, et al. Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells[J]. BMB Rep, 2017, 50:132-137.
[65] Huang X, Li X, Xie X, et al. High expressions of LDHA and AMPK as prognostic biomarkers for breast cancer[J]. Breast, 2016, 30:39-46.
[66] Weihua J, Fei Z, Ning L, et al. FOXM1-LDHA signaling promoted gastric cancer glycolytic phenotype and progression[J]. Int J Clin Exp Pathol, 2015, 8:6756-6763.
[67] Cui XG, Han ZT, He SH, et al. HIF1/2α mediates hypoxiainduced LDHA expression in human pancreatic cancer cells[J]. Oncotarget, 2017, 8:24840-24852.
[68] Han RL, Wang FP, Zhang PA, et al. miR-383 inhibits ovarian cancer cell proliferation, invasion and aerobic glycolysis by targeting LDHA[J]. Neoplasma, 2017, 64:244-252.
[69] Ding X, Liu J, Liu T, et al. miR-148b inhibits glycolysis in gastric cancer through targeting SLC2A1[J]. Cancer Med, 2017, 6:1301-1310.
[70] Ojelabi OA, Lloyd KP, Simon AH, et al. WZB117(2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits GLUT1-mediated sugar transport by binding reversibly at the exofacial sugar binding site[J]. J Biol Chem, 2011, 291:26762-26772.
[71] Chen Q, Meng YQ, Xu XF, et al. Blockade of GLUT1 by WZB117 resensitizes breast cancer cells to adriamycin[J]. Anticancer Drugs, 2017, 28:880-887.
[72] Zhao F, Ming J, Zhou Y, et al. Inhibition of Glut1 by WZB117 sensitizes radioresistant breast cancer cells to irradiation[J]. Cancer Chemother Pharmacol, 2016, 77:963-972.
[73] Zhou K, Pedersen HK, Dawed AY, et al. Pharmacogenomics in diabetes mellitus:insights into drug action and drug discovery[J]. Nat Rev Endocrinol, 2016, 12:337-346.
[74] Koliaki C, Roden M. Alterations of mitochondrial function and insulin sensitivity in human obesity and diabetes mellitus[J]. Annu Rev Nutr, 2016, 36:337-367.
[75] Wang M, Wang XC, Zhao L, et al. Oligonucleotide microarray analysis reveals dysregulation of energy-related metabolism in insulin-sensitive tissues of type 2 diabetes patients[J]. Genet Mol Res, 2014, 13:4494-4504.
[76] Gonzalez-Franquesa A, Patti ME. Insulin resistance and mitochondrial dysfunction[J]. Adv Exp Med Biol, 2017, 982:465-520.
[77] Victor EJ, Javier EF, Fabres MU. MicroRNAs-mediated regulation of skeletal muscle GLUT4 expression and translocation in insulin resistance[J]. J Diabetes Res, 2017, 2017:7267910.
[78] Hall RK, Yamasaki T, Kucera T, et al. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin:the role of winged helix/forkhead proteins[J]. J Biol Chem, 2000, 275:30169-30175.
[79] Rovirallopis S, Bañuls C, Diazmorales N, et al. Mitochondrial dynamics in type 2 diabetes:pathophysiological implications[J]. Redox Biol, 2017, 11:637-645.
[80] Schrauwen-Hinderling VB, Kooi ME, Hesselink MK, et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects[J]. Diabetologia, 2007, 50:113-120.
[81] Kelley DE, He J, Menshikova EV, et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes[J]. Diabetes, 2002, 51:2944-2950.
[82] Ritov VB, Menshikova EV, Azuma K, et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity[J]. Am J Physiol Endocrinol Metab, 2010, 298:E49-E58.
[83] Mogensen M, Sahlin K, Fernström M, et al. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes[J]. Diabetes, 2007, 56:1592-1599.
[84] Krishnan J, Danzer C, Simka T, et al. Dietary obesity-associated HIF1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the SIRT2-NAD+ system[J]. Genes Dev, 2012, 26:259-270.
[85] Bogacka I, Ukropcova B, Mcneil M, et al. Structural and functional consequences of mitochondrial biogenesis in human adipocytes in vitro[J]. J Clin Endocrinol Metab, 2005, 90:6650-6656.
[86] Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet[J]. Nature, 2016, 444:337-342.
[87] Biala A, Tauriainen E, Siltanen A, et al. Resveratrol induces mitochondrial biogenesis and ameliorates Ang Ⅱ-induced cardiac remodeling in transgenic rats harboring human renin and angiotensinogen genes[J]. Blood Press, 2010, 19:196-205.
[88] Lagouge M, Argmann C, Gerharthines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha[J]. Cell, 2006, 127:1109-1122.
[89] Izaguirre M, Gil MJ, Monreal I, et al. The role and potential therapeutic implications of the fibroblast growth factors in energy balance and type 2 diabetes[J]. Curr Diab Rep, 2017, 17:43-56.
[90] Hanks LJ, Casazza K, Judd SE, et al. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults[J]. PLoS One, 2015, 10:e0122885.
[91] Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes[J]. Cell Metab, 2013, 18:333-340.
[92] Ajith TA, Jayakumar TG. Peroxisome proliferator-activated receptors in cardiac energy metabolism and cardiovascular disease[J]. Clin Exp Pharmacol Physiol, 2016, 43:649-658.
[93] Rydén M, Arner P. Cardiovascular risk score is linked to subcutaneous adipocyte size and lipid metabolism[J]. J Intern Med, 2017, 282:220-228.
[94] Sudheesh NP, Ajith TA, Janardhanan KK. Ganoderma lucidum ameliorate mitochondrial damage in isoproterenol-induced myocardial infarction in rats by enhancing the activities of TCA cycle enzymes and respiratory chain complexes[J]. Int J Cardiol, 2013, 165:117-125.
[95] Nikolic D, Castellino G, Banach M, et al. PPAR agonists, atherogenic dyslipidemia and cardiovascular risk[J]. Curr Pharm Des, 2016, 23:894-902.
[96] Campbell FM, Kozak R, Wagner A, et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the control of cardiac malonyl-CoA levels:reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase[J]. J Biol Chem, 2002, 277:4098-4103.
[97] O'Donnell JM, Fields AD, Sorokina N, et al. The absence of endogenous lipid oxidation in early stage heart failure exposes limits in lipid storage and turnover[J]. J Mol Cell Cardiol, 2008, 44:315-322.
[98] Cheng KC, Chang WT, Li YX, et al. GW0742 activates peroxisome proliferator-activated receptor δ to reduce free radicals and alleviate cardiac hypertrophy induced by hyperglycemia in cultured H9c2 cells[J]. J Cell Biochem, 2018, 119:9532-9542.
[99] Han L, Shen WJ, Bittner S, et al. PPARs:regulators of metabolism and as therapeutic targets in cardiovascular disease. Part Ⅱ:PPAR-β/δ and PPAR-γ[J]. Future Cardiol, 2017, 13:279-296.
[100] Tang X, Chen XF, Chen HZ, et al. Mitochondrial sirtuins in cardiometabolic diseases[J]. Clin Sci, 2017, 131:2063-2078.
[101] Singh CK, Chhabra G, Ndiaye M, et al. The role of sirtuins in antioxidant and redox signaling[J]. Antioxid Redox Signal, 2017, 28:643-661.
[102] Bedi KC, Snyder NW, Brandimarto J, et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure[J]. Circulation, 2011, 133:706-716.
[103] Yang W, Nagasawa K, Münch C, et al. Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization[J]. Cell, 2016, 167:985-1000.
[104] Sadhukhan S, Liu X, Ryu D, et al. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function[J]. Proc Natl Acad Sci U S A, 2016, 113:4320-4325.
[105] Guo L, Zhou SR, Wei XB, et al. Acetylation of mitochondrial trifunctional protein α-subunit enhances its stability to promote fatty acid oxidation and is decreased in NAFLD[J]. Mol Cell Biol, 2016, 36:2553-2567.
[106] Laurent G, German NJ, Saha AK, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase[J]. Mol Cell, 2013, 50:686-698.
[107] Laurent G, De Boer VCJ, Finley LWS, et al. SIRT4 represses peroxisome proliferator-activated receptor α activity to suppress hepatic fat oxidation[J]. Mol Cell Biol, 2013, 33:4552-4561.
[108] Pillai VB, Samant S, Sundaresan NR, et al. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial SIRT3[J]. Nat Commun, 2015, 6:6656.
[109] Chen T, Li J, Liu J, et al. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway[J]. Am J Physiol Heart Circ Physiol, 2015, 308:H424-H434.
[110] Shimada T, Furuta H, Doi A, et al. Des-acyl ghrelin protects microvascular endothelial cells from oxidative stress-induced apoptosis through sirtuin 1 signaling pathway[J]. Metabolism, 2014, 63:469-474.
[111] Luo YX, Tang X, An XZ. SIRT4 accelerates Ang Ⅱ-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity[J]. Eur Heart J, 2016, 38:1389-1398.
[112] Choubey SK, Prabhu D, Nachiappan M, et al. Molecular modeling, dynamics studies and density functional theory approaches to identify potentialinhibitors of SIRT4 protein from Homo sapiens:a novel target for the treatment of type 2 diabetes[J]. J Biomol Struct Dyn, 2017, 35:3316-3329.
[113] Xiao Y, Zhang X, Fan S, et al. MicroRNA-497 inhibits cardiac hypertrophy by targeting Sirt4[J]. PLoS One, 2016, 11:e0168078.
[114] Zou R, Shi W, Tao J, et al. SIRT5 and post-translational protein modifications:a potential therapeutic target for myocardial ischemia-reperfusion injury with regard to mitochondrial dynamics and oxidative metabolism[J]. Eur J Pharmacol, 2017, 818:410-418.
1.林璋, 祖先鹏, 谢海胜, 金慧子, 杨鸟, 刘心如, 张卫东.肠道菌群与人体疾病发病机制的研究进展[J]. 药学学报, 2016,51(6): 843-852
2.花芳, 余娇娇, 李珂, 胡卓伟.自噬影响衰老及老年病的研究进展[J]. 药学学报, 2014,49(6): 764-773