药学学报, 2019, 54(8): 1409-1416
引用本文:
李冰涛, 翟兴英, 李佳, 涂珺, 张启云, 徐国良, 黄丽萍, 邵峰, 朱卫丰, 刘荣华. 基于网络药理学葛根解热作用机制研究[J]. 药学学报, 2019, 54(8): 1409-1416.
LI Bing-tao, ZHAI Xing-ying, LI Jia, TU Jun, ZHANG Qi-yun, XU Guo-liang, HUANG Li-ping, SHAO Feng, ZHU Wei-feng, LIU Rong-hua. Network pharmacology-based study on mechanisms of antipyretic action of Pueraria radix[J]. Acta Pharmaceutica Sinica, 2019, 54(8): 1409-1416.

基于网络药理学葛根解热作用机制研究
李冰涛1, 翟兴英1, 李佳2, 涂珺1, 张启云1, 徐国良1, 黄丽萍2, 邵峰2, 朱卫丰2, 刘荣华2
1. 江西中医药大学中医基础理论分化发展研究中心, 江西 南昌 330004;
2. 江西中医药大学药学院, 江西 南昌 330004
摘要:
采用活性成分筛选、靶点预测技术,确定葛根解热作用有效成分及作用靶点,生物信息学技术富集通路及生物过程,分子对接验证网络分析结果,阐述葛根解热作用的作用机制。结果显示,葛根49个有效成分可能调控PTGS2和EGFR等21个靶点,显著影响环氧化酶通路、前列腺素合成、正向调节发热、炎症反应等11条生物过程及花生四烯酸代谢、5羟色胺突触、HIF-1信号等7条代谢通路。分子对接验证显示,65%以上的有效成分与关键靶点具有结合活性,相关文献也显示结果所得活性成分能够抑制关键靶点PTGS2表达,说明结果可靠性较高。研究结果表明,葛根可能通过"多成分、多靶点和多通路"作用发挥解热作用,为葛根的进一步研究及其产品开发提供了科学依据。
关键词:    葛根      发热      网络药理学      分子对接      生物过程      通路分析     
Network pharmacology-based study on mechanisms of antipyretic action of Pueraria radix
LI Bing-tao1, ZHAI Xing-ying1, LI Jia2, TU Jun1, ZHANG Qi-yun1, XU Guo-liang1, HUANG Li-ping2, SHAO Feng2, ZHU Wei-feng2, LIU Rong-hua2
1. Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of TCM, Nanchang 330004, China;
2. School of Pharmacy, Jiangxi University of TCM, Nanchang 330004, China
Abstract:
This study was designed to explore the antipyretic mechanism of Pueraria radix. The method of network pharmacology was used to determine the known ingredients corresponding to Pueraria radix, predict the drug-related gene/protein targets, and analyze the interplay between key ingredients and targets. Biological Information Annotation Databases (DAVID) was used to enrich the biological processes and pathways. The result of network analysis was validated by molecular docking. It was found that 49 active ingredients of Pueraria radix not only regulate 21 targets (e.g. PTGS2, EGFR), but also affect 11 biological processes (e.g. oxidation-reduction process, prostaglandin synthesis, positive regulation of fever generation and inflammatory response) and 7 metabolic pathways (arachidonic acid metabolism, serotonergic synapse and HIF-1, et al). Molecular docking results showed that more than 65% of the active ingredients could be well docked with key targets, and the relevant literatures indicated that the active components could inhibit the expression of PTGS2, which means the result has a high reliability. These results indicated that Pueraria radix may carry its pyretic action via a "multi-ingredients-multitargets-multi-pathways" mode, which provides a scientific basis for further research and drug development.
Key words:    Pueraria radix    fever    network pharmacology    molecular docking    biology process    pathway analysis   
收稿日期: 2018-12-09
DOI: 10.16438/j.0513-4870.2018-1098
基金项目: 国家科技支撑计划(2017YFC1702902);江西省中医药科技计划项目(2018A309);江西中医药大学博士启动基金(2015BS010).
通讯作者: 刘荣华,Tel:86-791-87118992,E-mail:rhliu@163.com
Email: rhliu@163.com
相关功能
PDF(522KB) Free
打印本文
0
作者相关文章
李冰涛  在本刊中的所有文章
翟兴英  在本刊中的所有文章
李佳  在本刊中的所有文章
涂珺  在本刊中的所有文章
张启云  在本刊中的所有文章
徐国良  在本刊中的所有文章
黄丽萍  在本刊中的所有文章
邵峰  在本刊中的所有文章
朱卫丰  在本刊中的所有文章
刘荣华  在本刊中的所有文章

参考文献:
[1] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China[M]. Beijing:China Medical Science and Technology Press, 2015.
[2] Li G, Zhang Q, Wang Y. Chemical constituents from roots of Pueraria lobate[J]. China J Chin Mater Med (中国中药杂志), 2010, 35:3156-3159.
[3] Li X, Pan JX, Chen SG, et al. Research progress of chemical components and pharmacological action of Pueraria lobata[J]. J Chin Institute Food Sci Technol (中国食品学报), 2017, 17:189-195.
[4] Fan SD, Sun LH, Liang Q, et al. Experimental study of antipyretic effect of puerarin fevered rabbits[J]. J China Med Univ (中国医科大学学报), 1991, 20:250-252.
[5] Wang XR, Wu W. Experimental research on puerarin injection in the treatment of endotoxic fever[J]. China Naturopathy (中国民间疗法), 1998, (2):53-55.
[6] Yan L, He XY, Gao Y, et al. An exploration into mechanism of leukocyte elevation activity of Lvjiao Buxue granules based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2018, 53:1660-1669.
[7] Shanghai Institute of Organnic Chemistry, Chinese Academy of Sciences. Chemical Database[DB/OL]. http://www.organchem.csdb.cn.[1978-2016].
[8] Lipinski CA. Lead- and drug-like compounds:the rule-of-five revolution[J]. Drug Discov Today Technol, 2004, 1:337-341.
[9] Yang EB, Li ZM. Linpinski rules in drug molecular design[J]. Chemistry (化学通报), 2006, 69:16-19.
[10] Zhang J, Tan CB, Xu WR. Advances in studies on Lipinski's five rules[J]. Drug Eval Res (药物评价研究), 2011, 34:451-455.
[11] Gfeller D, Grosdidier A, Wirth M, et al. SwissTargetPrediction:a web server for target prediction of bioactive small molecules[J]. Nucleic Acids Res, 2014, 42:32-38.
[12] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2008, 4:44-57.
[13] Mering CV, Jensen LJ, Snel B, et al. STRING:known and predicted protein-protein associations, integrated and transferred across organisms[J]. Nucleic Acids Research, 2005, 33:D433-D437.
[14] Feng W, Ao H, Yue S, et al. Systems pharmacology reveals the unique mechanism features of Shenzhu Capsule for treatment of ulcerative colitis in comparison with synthetic drugs[J]. Sci Rep, 2018, 8:1-12.
[15] Wu D, Gao Y, Xiang H, et al. Exploration into mechanism of antidepressant of Bupleuri radix based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2018, 53:210-219.
[16] Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One, 2013, 8:e83922.
[17] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Res, 2009, 37:1-13.
[18] Wu JL, Shen MM, Yang SX, et al. Inhibitory effect of ferulic acid on neuroinflammation in LPS-activated microglia[J]. Chin Pharmacol Bull (中国药理学通报), 2015, 31:97-102.
[19] Wang J, Liu YT, Xiao L, et al. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-κ B pathway[J]. Inflammation, 2014, 37:2085-2090.
[20] Hämäläinen M, Nieminen R, Asmawi MZ, et al. Effects of flavonoids on prostaglandin E-2 production and on COX-2 and mPGES-1 expressions in activated macrophages[J]. Planta Med, 2011, 77:1504-1511.
[21] Kim JY, Park SJ, Yun KJ, et al. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-κB in RAW 264.7 macrophages[J]. Eur J Pharmacol, 2008, 584:175-184.
[22] Wendt MK, Williams WK, Pascuzzi PE, et al. The antitumorigenic function of EGFR in metastatic breast cancer is regulated by expression of Mig6[J]. Neoplasia, 2015, 17:124-133.
[23] Shi W, Wang YM. Progresses in biological research of the cyclooxygenase (COX) family[J]. Chin Pharm J (中国药学杂志), 2004, 40:246-249.
[24] Williams CS, Mann M, Dubois RN. The role of cyclooxygenases in inflammation, cancer, and development[J]. Oncogene, 1999, 18:7908-7916.
[25] Berry E, Hernandez-Anzaldo S, Ghomashchi F, et al. Matrix metalloproteinase-2 negatively regulates cardiac secreted phospholipase A2 to modulate inflammation and fever[J]. J Am Heart Assoc, 2015, 4:e002553.
[26] Li Y, Yao J, Han C, et al. Quercetin, inflammation and immunity[J]. Nutrients, 2016, 8:167-180.
[27] Zhang ZT, Liu QG, Liu XH, et al. Synthesis, crystal structure and biological activity of monomethylated daidzein sulfonates[J]. Acta Chimica Sinica (化学学报), 2002, 60:1846-1853.
[28] Hu YJ, Gao KG, Zheng CT, et al. Effect of dietary supplementation with glycitein during late pregnancy and lactation on antioxidative indices and performance of primiparous sows[J]. J Anim Sci, 2015, 93:2246-2254.
[29] Zhang B, Su JP, Bai Y, et al. Inhibitory effects of O-methylated isoflavone glycitein on human breast cancer SKBR-3 cells[J]. Int J Clin Exp Pathol, 2015, 8:7809-7817.
[30] Wu Y, Zhang X, Li Z. Formononetin inhibits human bladder cancer cell proliferation and invasiveness via regulation of miR-21 and PTEN[J]. Food Funct, 2017, 8:1061-1066.
[31] Ajduković J. HIF-1-a big chapter in the cancer tale[J]. Exp Oncol, 2016, 38:9-12.
[32] Lin MT, Pang IH,Chern SI, et al. Effects of increasing serotonergic receptor activity in brain on prostaglandin E1-induced fever in rabbits[J]. Pharmacology, 1979, 18:188-194.
[33] Yin SM. An Investigation into the Thermoregulatoty Mechanism of Hypothalamus in Lizard Phrynocephalus Przewalski (下丘脑在荒漠沙蜥体温调节中的作用及其机制初探)[D]. Lanzhou:Lanzhou University, 2004.
[34] Tao YQ, Liang T, Zhou KY. Three arachidonic add metabolic pathways involved in inflammation[J]. Int J Immunol, 2010, 33:303-306.
[35] Boron WF, Boulpaep EL. Medical Physiology:A Cellular and Molecular Approach[M]. Philadelphia:Saunders/Elsevier, 2003.
[36] Stefferl A, Hopkins SJ, Rothwell NJ, et al. The role of TNFalpha in fever:opposing actions of human and murine TNF-alpha and interactions with IL-beta in the rat[J]. Br J Pharmacol, 2012, 118:1919-1924.
相关文献:
1.庄莉, 翟园园, 姚卫峰, 徐佳, 冯丽, 包贝华, 曹雨诞, 张丽, 丁安伟.基于网络药理学的二至丸对肾脏保护作用的机制研究[J]. 药学学报, 2019,54(5): 877-885
2.张王宁, 高耀, 李科, 钞建宾, 秦雪梅, 李爱平.基于网络药理学的黄芪总黄酮治疗肾病综合征的机制研究[J]. 药学学报, 2018,53(9): 1429-1441
3.时悦, 姚璎珈, 蔺莹, 梁喜才, 倪颖男, 吴雨桐, 杨静娴.基于网络药理学的开心散治疗阿尔茨海默病的作用机制分析[J]. 药学学报, 2018,53(9): 1458-1466
4.颜磊, 何小燕, 高耀, 向欢, 徐向平, 黄胜, 颜冬兰, 秦雪梅, 田俊生.基于网络药理学的驴胶补血颗粒升高白细胞作用机制研究[J]. 药学学报, 2018,53(10): 1660-1669
5.吴丹, 高耀, 向欢, 邢婕, 韩雨梅, 秦雪梅, 田俊生.基于网络药理学的柴胡抗抑郁作用机制研究[J]. 药学学报, 2018,53(2): 210-219
6.李磊, 图门巴雅尔, 李培锋, 刘畅, 李升和, 宁康健, 姜锦鹏.牛磺鹅去氧胆酸抗炎作用机制的网络药理学研究[J]. 药学学报, 2018,53(12): 2064-2075
7.孙莉敏, 刘丽芳, 朱华旭, 朱宝杰, 张启春.基于网络药理学的黄连解毒汤治疗阿尔兹海默症的作用机制研究[J]. 药学学报, 2017,52(8): 1268-1275
8.韩彦琪, 许浚, 张喜民, 张铁军, 任一杰, 刘昌孝.基于网络药理学的元胡止痛滴丸治疗原发性痛经的作用机制研究[J]. 药学学报, 2016,51(3): 380-387
9.程彬峰, 侯媛媛, 姜 民, 赵振营, 董林毅, 白 钢.基于网络药理学的清肺消炎丸抗炎机制的初步研究[J]. 药学学报, 2013,48(5): 686-693