药学学报, 2019, 54(8): 1424-1430
引用本文:
杜倩倩, 黄璐璐, 刘春霞, 唐梅, 闫辰, 李燕. 异鼠李素与索拉非尼联合对肾癌的抑制作用及作用机制[J]. 药学学报, 2019, 54(8): 1424-1430.
DU Qian-qian, HUANG Lu-lu, LIU Chun-xia, TANG Mei, YAN Chen, LI Yan. Anti-tumor activity and mechanisms of isorhamnetin in combination with sorafenib for renal cancer[J]. Acta Pharmaceutica Sinica, 2019, 54(8): 1424-1430.

异鼠李素与索拉非尼联合对肾癌的抑制作用及作用机制
杜倩倩, 黄璐璐, 刘春霞, 唐梅, 闫辰, 李燕
中国医学科学院、北京协和医学院药物研究所, 新药作用机制与药效评价北京市重点实验室, 北京 100050
摘要:
本研究主要探讨黄芪成分异鼠李素与索拉非尼联合使用后对肾癌的生长抑制作用及其作用机制。MTT法检测异鼠李素及与索拉非尼联合后的抗肿瘤活性;采用小鼠Renca移植瘤模型观察其对肾癌生长的抑制作用。Western blot初步探讨异鼠李素及与索拉非尼联合后抗肾癌作用机制。淋巴细胞增殖实验检测体内异鼠李素及与索拉非尼联合后对小鼠脾淋巴细胞增殖影响。结果显示,异鼠李素对不同肾癌细胞增殖有较弱的抑制作用,其作用于A498细胞、786-O细胞和Renca细胞120 h后的半数抑制浓度(IC50)分别是31.7、28.8和106.0μmol·L-1,异鼠李素联合索拉非尼可增加索拉非尼对Renca细胞的生长抑制作用,索拉非尼的IC50由26.1μmol·L-1降至12.0μmol·L-1;单独使用50.0 mg·kg-1异鼠李素能较弱地抑制小鼠Renca肾癌的生长,抑制率仅为26.9%,而此剂量的异鼠李素和20.0 mg·kg-1索拉非尼联合使用时抑制率可达60.7%,提示异鼠李素可增加索拉非尼的抗肾癌活性。Western blot结果表明,异鼠李素可通过抑制c-Raf/MEK/ERK、AKT/mTOR等信号通路发挥抑制肾癌生长的作用。与对照组相比,异鼠李素与索拉非尼体内联合后能促进未活化的脾淋巴细胞增殖及刀豆蛋白A和脂多糖刺激后的淋巴细胞增殖。综上所述,异鼠李素与索拉非尼联合可增强索拉非尼的抗肾癌活性,其作用机制可能与抑制c-Raf/MEK/ERK和AKT/mTOR信号通路有关。动物实验中对动物的处理均遵循中国医学科学院药物研究所动物实验中心标准操作规程。
关键词:    异鼠李素      索拉非尼      联合用药      肾癌      c-Raf/MEK/ERK      AKT/mTOR     
Anti-tumor activity and mechanisms of isorhamnetin in combination with sorafenib for renal cancer
DU Qian-qian, HUANG Lu-lu, LIU Chun-xia, TANG Mei, YAN Chen, LI Yan
Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
This study aimed to explore the anti-tumor activity and mechanisms of action of isorhamnetin, a compound isolated from Astragalus membranaceus, in combination with sorafenib for treatment of renal cell carcinoma (RCC). The anti-tumor activity of isorhamnetin in combination with sorafenib was detected by MTT assay with cells in culture or Renca xenograft model in mice. Western blot was used to study the mechanisms of isorhamnetin in combination with sorafenib. Lymphocyte proliferation assay was also used to investigate the effects of the two drugs in combination. The results indicated that isorhamnetin inhibited the proliferation of RCC cells, with IC50 for A498, 786-O and Renca cell lines with being 31.7, 28.8 and 106.0 μmol·L-1, respectively. Isorhamnetin in combination with sorafenib improved the anti-lymphocyte proliferation activity of sorafenib with the IC50 down to 12.0 μmol·L-1. Isorhamnetin inhibited the growth of RCC in mice slightly with the inhibition efficiency at 26.9%. With 50.0 mg·kg-1 isorhamnetin in combination with 20.0 mg·kg-1 sorafenib, the anti-tumor activity of sorafenib was enhanced, with inhibition of growth rate increased to 60.7%. Meanwhile, isorhamnetin in combination with sorafenib could promote the lymphocytes proliferation in Renca xenograft model. Western blot results showed that combination of isorhamnetin and sorafenib could inhibit c-Raf/MEK/ERK and AKT/mTOR signaling pathways. In conclusion, the combination of isorhamnetin with sorafenib could increase the anti-tumor activity of sorafenib in RCC in vitro and in vivo. The mechanisms may be related to the inhibition of c-Raf/MEK/ERK and AKT/mTOR signaling pathways. Procedures for animal study were performed with approval of the Animal Care and Use Committee of the Chinese Academy of Medical Sciences and Peking Union Medical College.
Key words:    isorhamnetin    sorafenib    drug combination    renal cancer    c-Raf/MEK/ERK    AKT/mTOR   
收稿日期: 2018-12-21
DOI: 10.16438/j.0513-4870.2018-1138
基金项目: 中国医学科学院医学与健康科技创新工程-重大协同创新项目(2016-I2M-1-008).
通讯作者: 李燕,Tel:86-10-63169181,E-mail:liyanxiao@imm.ac.cn
Email: liyanxiao@imm.ac.cn
相关功能
PDF(504KB) Free
打印本文
0
作者相关文章
杜倩倩  在本刊中的所有文章
黄璐璐  在本刊中的所有文章
刘春霞  在本刊中的所有文章
唐梅  在本刊中的所有文章
闫辰  在本刊中的所有文章
李燕  在本刊中的所有文章

参考文献:
[1] Chen WQ, Zheng RS, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66:115-132.
[2] Oh JJ, Lee JK, Do SB, et al. Accurate risk assessment of patients with pathologic T3aN0M0 renal cell carcinoma[J]. Sci Rep, 2018, 8:13914.
[3] Xu FJ. The Effect of sorafenib in the treatment of patients with advanced renal cell carcinoma and the adverse effects of observation[J]. J Guide Chin Med (中国医药指南), 2017, 15:8-9.
[4] Li H, Shen KK. Research progress of drug combination of Chinese materia medica on antitumor[J]. Acta Univ Tradit Med Sin Pharmacol Shanghai (上海中医药大学学报), 2017, 31:90-94.
[5] Wu J, Wang C. Research progress on the pharmacological effect of Astragalus membranaceus[J]. J Xinxiang Med Coll (新乡医学院学报), 2018, 35:755-760.
[6] Lin Q, Li Y, Tang XM, et al. Simultaneous determination of formononetin, calycosin and isorhamnetin from Astragalus mongholicus in rat plasma by LC-MS/MS and application to pharmacokinetic study[J]. J Chin Med Mater (中药材), 2013, 36:589-593.
[7] Liu CX, Huang LL, Yan C, et al. The anti-tumor activity and mechanisms of a GLI1 inhibitor FL18 in suppression of glioblastoma growth[J]. Acta Pharm Sin (药学学报), 2018, 53:1113-1121.
[8] Yuan SJ. Establishment of new method for quantitatively calculating synergistic, additive and antagonistic effect in multiple drug combination[J]. Chin J Pharmacol Toxicity (中国药理学与毒理学杂志), 2016, 30:1316-1332.
[9] Rosenberg L, Yoon CH, Sharma G, et al. Sorafenib inhibits proliferation and invasion in desmoid-derived cells by targeting Ras/MEK/ERK and PI3K/AKT/mTOR pathways[J]. Carcinogenesis, 2018, 39:681-688.
[10] Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance[J]. Asian J Androl, 2014, 16:378-386.
[11] Mao LY, Chen QY, Gong K, et al. Berberine decelerates glucose metabolism via suppression of mTOR dependent HIF1α protein synthesis in colon cancer cells[J]. Oncol Rep, 2018, 39:2436-2442.
[12] Cui SX, Shi WN, Song ZY, et al. Des-gamma-carboxy prothrombin antagonizes the effects of sorafenib on human hepatocellular carcinoma through activation of the Raf/MEK/ERK and PI3K/AKT/mTOR signaling pathways[J]. Oncotarget, 2016, 7:36767-36782.
[13] Zeng YZ, Tian XF, Wang Q, et al. Attenuation of everolimusinduced cytotoxicity by a protective autophagic pathway involving ERK activation in renal cell carcinoma cells[J]. Drug Des Devel Ther, 2018, 12:911-920.
[14] Chen XL, Yang HF, Zhai JW, et al. Effect of different mulberry leaf extracts on spleen lymphocyte proliferation in mice[J]. Chin Anim Husb Vet Med (中国畜牧兽医), 2017, 44:3598-3604.
[15] Zheng W, Shou JZ, Ma JH. Research status of sorafenib for patients with renal cell carcinoma[J]. Clin Med J (临床药物治疗杂志), 2012, 10:19-23.
[16] Kuo CC, Chen JJ, Tsai JY, et al. Effects of Chinese herbal medicine in combination with mitomycin C on gastric cancer cells[J]. Biomark Res, 2014, 2:26.
[17] Zhou RJ, Chen HJ, Chen JP, et al. Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway[J]. BMC Complement Altern Med, 2018, 18:83.
[18] Chen YC, Duda DG. Targeting immunosuppression after standard sorafenib treatment to facilitate immune checkpoint blockade in hepatocellular carcinoma-an auto-commentary on clinical potential and future development[J]. Oncoimmunology, 2015, 4:e1029703.
[19] Zhao W, Gu YH, Song R, et al. Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation[J]. Leukemia, 2008, 22:1226-1233.
[20] Nishida N, Kitano M, Sakurai T, et al. Molecular mechanism and prediction of sorafenib chemoresistance in human hepatocellular carcinoma[J]. Dig Dis, 2015, 33:771-779.
[21] Liu C, Lee WC, Huang BM, et al. 16-Hydroxycleroda-3,13-dien-15,16-olide inhibits the proliferation and induces mitochondrialdependent apoptosis through AKT, mTOR, and MEK-ERK pathways in human renal carcinoma cells[J]. Phytomedicine, 2017, 36:95-107.