药学学报, 2019, 54(9): 1531-1537
单天姣, 孙健, 梁海海. 细胞衰老与器官纤维化研究进展[J]. 药学学报, 2019, 54(9): 1531-1537.
SHAN Tian-jiao, SUN Jian, LIANG Hai-hai. Progress in the study of association between cellular senescence and organ fibrosis[J]. Acta Pharmaceutica Sinica, 2019, 54(9): 1531-1537.

单天姣, 孙健, 梁海海
哈尔滨医科大学药学院药理学教研室, 省部共建生物医药重点实验室培育基地, 心血管药物研究教育部重点实验室, 黑龙江 哈尔滨 150081
关键词:    细胞衰老      心肌纤维化      肺纤维化      作用机制      药物治疗     
Progress in the study of association between cellular senescence and organ fibrosis
SHAN Tian-jiao, SUN Jian, LIANG Hai-hai
Department of Pharmacology(State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
Deformation or failure of organs is the final stage involving fibrosis, caused by fibrous scars composed of excess extracellular matrix proteins. Cellular senescence means a stable stagnation state with no proliferation, during which the senescent cells maintain biochemical metabolism but promote excessive expression of extracellular matrix proteins due to secreting inflammatory factors, which contribute to the development of various organ fibrosis including myocardial fibrosis, and pulmonary fibrosis. It has been shown that both the incidence of organ fibrosis and the number of senescent cells increase with age. This review mainly summarizes mechanisms of cellular senescence and its contribution to the process of various organ fibrosis. Current anti-fibrotic drug therapy focused on cellular senescence is discussed. Cellular senescence has profound implications in the pathogenesis of fibrotic diseases and provides a new target for new effective treatments.
Key words:    cellular senescence    myocardial fibrosis    pulmonary fibrosis    mechanism    medication   
收稿日期: 2019-01-03
DOI: 10.16438/j.0513-4870.2019-0017
基金项目: 国家自然科学基金资助项目(31671187).
通讯作者: 梁海海,Tel:86-451-86671354,E-mail:lianghaihai@ems.hrbmu.edu.cn
Email: lianghaihai@ems.hrbmu.edu.cn
PDF(555KB) Free
单天姣  在本刊中的所有文章
孙健  在本刊中的所有文章
梁海海  在本刊中的所有文章

[1] Wynn TA, Ramalingam TR. Mechanisms of fibrosis:therapeutic translation for fibrotic disease[J]. Nat Med, 2012, 18:1028-1040.
[2] Rockey DC, Bell PD, Hill JA. Fibrosis——a common pathway to organ injury and failure[J]. New Engl J Med, 2015, 372:1138-1149.
[3] Kuilman T, Michaloglou C, Mooi WJ, et al. The essence of senescence[J]. Genes Dev, 2010, 24:2463-2479.
[4] Ley B, Collard H. Epidemiology of idiopathic pulmonary fibrosis[J]. Clin Epidemiol, 2013, 5:483-492.
[5] Desai A, Fang JC. Heart failure with preserved ejection fraction:hypertension, diabetes, obesity/sleep apnea, and hypertrophic and infiltrative cardiomyopathy[J]. Heart Fail Clin, 2008, 4:87-97.
[6] Dzeshka MS, Shahid F, Shantsila A, et al. Hypertension and atrial fibrillation:an intimate association of epidemiology, pathophysiology, and outcomes[J]. Am J Hypertens, 2017, 30:733-755.
[7] Coresh J, Astor BC, Greene T, et al. Prevalence of chronic kidney disease and decreased kidney function in the adult US population:third national health and nutrition examination survey[J]. Am J Kidney Dis, 2003, 41:1-12.
[8] Lópezotín C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013, 153:1194-1217.
[9] Muñoz-Espín D, Serrano M. Cellular senescence:from physiology to pathology[J]. Nat Rev Mol Cell Biol, 2014; 15:482-496.
[10] Coppé JP, Desprez PY, Krtolica A, et al. The senescence-associated secretory phenotype:the dark side of tumor suppression[J]. Annu Rev Pathol, 2010, 5:99-118.
[11] Schafer MJ, Haak AJ, Tschumperlin DJ, et al. Targeting senescent cells in fibrosis:pathology, paradox, and practical considerations[J]. Curr Rheumatol Rep, 2018, 20:3.
[12] Luo C, Zhou S, Zhou Z, et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells[J]. J Am Soc Nephrol, 2018, 29:1238-1256.
[13] Yang H, Wang H, Ren J, et al. cGAS is essential for cellular senescence[J]. Proc Natl Acad Sci U S A, 2017, 114:E4612.
[14] Alvarez D, Cardenes N, Sellares J, et al. IPF lung fibroblasts have a senescent phenotype[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313:L1164-L1173.
[15] Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis[J]. J Clin Invest, 2017, 127:405-414.
[16] Hernandezsegura A, Nehme J, Demaria M. Hallmarks of cellular senescence[J]. Trends Cell Biol, 2018, 28:436-453.
[17] Tian YQ, Li H, Qiu T, et al. Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation[J]. Aging Cell, 2019, 18:e12858.
[18] Jiang C, Gang L, Luckhardt T, et al. Serpine 1 induces alveolar type Ⅱ cell senescence through activating p53-p21-Rb pathway in fibrotic lung disease[J]. Aging Cell, 2017, 16:1114.
[19] Alder JK, Chen JL, Lancaster L, et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis[J]. Proc Natl Acad Sci U S A, 2008, 105:13051-13056.
[20] Armanios M. Telomeres and age-related disease:how telomere biology informs clinical paradigms[J]. J Clin Invest, 2013, 123:996-1002.
[21] Armanios MY, Chen JJL, Cogan JD, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis[J]. N Engl J Med, 2007, 356:1317-1326.
[22] Naikawadi RP, Disayabutr S, Mallavia B, et al. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis[J]. JCI Insight, 2016, 1:e86704.
[23] Disayabutr S, Kim EK,Cha SI, et al. miR-34 miRNAs regulate cellular senescence in type Ⅱ alveolar epithelial cells of patients with idiopathic pulmonary fibrosis[J]. PLoS One, 2016, 11:e0158367.
[24] Lehmann M, Korfei M, Mutze K, et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo[J]. Eur Respir J, 2017, 50:1602367.
[25] Shaw RJ, Cantley LC. Ras, PI3K and mTOR signalling controls tumour cell growth[J]. Nature, 2006, 441:424-430.
[26] Romero Y, Bueno M, Ramirez R, et al. mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts[J]. Aging Cell, 2016, 15:1103-1112.
[27] Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease[J]. Nat Commun, 2017, 8:14532.
[28] Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev, 2017, 121:27-42.
[29] Aravinthan AD, Alexander GJ. Senescence in chronic liver disease:is the future in aging?[J]. J Hepatol, 2016, 65:825-834.
[30] O'Hara SP, Larusso NF. Cellular senescence, neuropeptides and hepatic fibrosis:additional insights into increasing complexity[J]. Hepatology, 2017, 66:318-320.
[31] Yosef R, Pilpel N, Papismadov N, et al. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling[J]. EMBO J, 2017, 36:2280-2295.
[32] Faggioli F, Palagano E, Tommaso LD, et al. B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury[J]. Hepatology, 2017, 67:1970-1985.
[33] Radaeva S, Sun R, Jaruga B, et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners[J]. Gastroenterology, 2006, 130:435-452.
[34] Kong X, Feng D, Wang H, et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice[J]. Hepatology, 2012, 56:1150-1159.
[35] Sekoguchi S, Nakajima T, Moriguchi M, et al. Role of cell-cycle turnover and oxidative stress in telomere shortening and cellular senescence in patients with chronic hepatitis C[J]. J Gastroenterol Hepatol, 2007, 22:182-190.
[36] Paradis V, Youssef N, Dargère Delphine, et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas[J]. Hum Pathol, 2001, 32:327-332.
[37] Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis[J]. Cell, 2008, 134:657-667.
[38] Lau LF. CCN1/CYR61:the very model of a modern matricellular protein[J]. Cell Mol Life Sci, 2011, 68:3149-3163.
[39] Kim KH, Chen CC, Monzon RI, et al. The matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts[J]. Mol Cell Biol, 2013, 33:2078-2090.
[40] Sasaki M, Ikeda H, Yamaguchi J, et al. Bile ductular cells undergoing cellular senescence increase in chronic liver diseases along with fibrous progression[J]. Am J Clin Pathol, 2010, 133:212-223.
[41] Sasaki M, Ikeda H, Sato Y, et al. Decreased expression of Bmi1 is closely associated with cellular senescence in small bile ducts in primary biliary cirrhosis[J]. Am J Pathol, 2006, 169:831-845.
[42] Moncsek A, Alsuraih MS, Trussoni CE, et al. Targeting senescent cholangiocytes and activated fibroblasts with Bcl-xL inhibitors ameliorates fibrosis in Mdr2-/-mice[J]. Hepatology, 2018, 67:247-259.
[43] Wan Y, Meng F, Wu N, et al. Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells[J]. Hepatology, 2017, 66:528-541.
[44] Ock S, Lee WS, Ahn J, et al. Deletion of IGF-1 receptors in cardiomyocytes attenuates cardiac aging in male mice[J]. Endocrinology, 2016, 157:336-345.
[45] Hua Y, Robinson TJ, Cao Y, et al. Cathepsin K knockout alleviates aging-induced cardiac dysfunction[J]. Aging Cell, 2015, 14:345-351.
[46] Diez C, Nestler M, Friedrich U, et al. Down-regulation of Akt/PKB in senescent cardiac fibroblasts impairs PDGF-induced cell proliferation[J]. Cardiovasc Res, 2001, 49:731-740.
[47] Meyer K, Hodwin B, Ramanujam D, et al. Essential role for premature senescence of myofibroblasts in myocardial fibrosis[J]. J Am Coll Cardiol, 2016, 67:2018-2028.
[48] Okada A, Nangaku M, Jao TM, et al. D-Serine, a novel uremic toxin, induces senescence in human renal tubular cells via GCN2 activation[J]. Sci Rep, 2017, 7:11168.
[49] Leung JY, Wilson HL, Voltzke KJ, et al. Sav1 loss induces senescence and Stat3 activation coinciding with tubulointerstitial fibrosis[J]. Mol Cell Biol, 2017, 37:e00565-16.
[50] Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J Am Soc Nephrol, 2010, 21:212-222.
[51] Dong D, Cai GY, Ning YC, et al. Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling[J]. Oncotarget, 2017, 8:16109-16121.
[52] Chi HSL, Chen J, Zhang Z, et al. Endostatin and transglutaminase 2 are involved in fibrosis of the aging kidney[J]. Kidney Int, 2016, 89:1281-1292.
[53] Mario C, Gakriella MM, Paola R, et al. Senolytic drugs in respiratory medicine:is it an appropriate therapeutic approach?[J]. Exp Opin Invest Drugs, 2018, 27:573-581.
[54] Justice JN, Nambiar AM, Tchkonia T, et al. Senolytics in idiopathic pulmonary fibrosis:results from a first-in-human, open-label, pilot study[J]. EBioMedicine, 2019. DOI:10.1016/j.ebiom. 2018.12.052.
[55] Kirkland JL, Tchkonia T. Clinical strategies and animal models for developing senolytic agents[J]. Exp Gerontol, 2015, 68:19-25.
[56] Nayak D, Kumar A, Chakraborty S, et al. Inhibition of Twist1-mediated invasion by Chk2 promotes premature senescence in p53-defective cancer cells[J]. Cell Death Diff, 2017, 24:1275-1287.
[57] Gilpin SE, Li Q, Evangelistaleite D, et al. Fibrillin-2 and tenascin-C bridge the age gap in lung epithelial regeneration[J]. Biomaterials, 2017, 140:212-219.