药学学报, 2019, 54(9): 1547-1553
引用本文:
常艳, 魏伟. Trp-IDO1,2/TDO2-Kyn代谢通路介导类风湿关节炎的研究进展[J]. 药学学报, 2019, 54(9): 1547-1553.
CHANG Yan, WEI Wei. Progress in research of Trp-IDO1,2/TDO2-Kyn metabolic pathway in the pathogenesis of rheumatoid arthritis[J]. Acta Pharmaceutica Sinica, 2019, 54(9): 1547-1553.

Trp-IDO1,2/TDO2-Kyn代谢通路介导类风湿关节炎的研究进展
常艳, 魏伟
安徽医科大学临床药理研究所, 抗炎免疫药物教育部重点实验室, 抗炎免疫药物安徽省协同创新中心, 安徽 合肥 230032
摘要:
类风湿关节炎(rheumatoid arthritis,RA)是以自身反应性T细胞和B细胞过度活化,自身抗体大量产生为特征,多关节受累为主要表现的自身免疫病。在遗传和环境等因素影响下,固有免疫和适应性免疫功能紊乱是其发病的根本原因。近年来,"免疫代谢学"快速发展,在不同能量代谢途径及相关分子调控免疫细胞分化与功能等方面取得重要进展。多项研究表明,Trp-IDO1,2/TDO2-Kyn代谢通路介导了RA等自身免疫病的病理机制和发生发展。本文综述了此代谢通路中色氨酸(tryptophan,Trp)和犬尿氨酸(kynurenine,Kyn)等代谢物以及限速酶吲哚胺-2,3-双加氧酶1(indoleamine 2,3-dioxygenase 1,IDO1)、吲哚胺-2,3-双加氧酶2(indoleamine 2,3-dioxygenase 2,IDO2)和色氨酸-2,3-双加氧酶2(tryptophan-2,3-dioxygenase 2,TDO2)介导RA炎症免疫反应和滑膜炎症的作用和研究进展,为阐明RA新的病理机制和发现新的药物靶点提供重要依据。
关键词:    类风湿关节炎      免疫代谢      色氨酸      犬尿氨酸      吲哚胺-2,3-双加氧酶1      吲哚胺-2,3-双加氧酶2      色氨酸-2,3-双加氧酶2     
Progress in research of Trp-IDO1,2/TDO2-Kyn metabolic pathway in the pathogenesis of rheumatoid arthritis
CHANG Yan, WEI Wei
Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
Abstract:
Rheumatoid arthritis (RA) is an autoimmune disease characterized by excessive activation of autoreactive T cells and B cells, abundant production of autoantibodies and multiple joint involvement. Under the influence of heredity and environment, the disorder of innate immunity and adaptive immunity is the fundamental cause of the disease. In recent years, with rapid development of immunometabolism, milestone has been made in regulating the differentiation and function of immune cells through different energy metabolism pathways and related molecules. Many studies have shown that Trp-IDO1,2/TDO2-Kyn metabolic pathway mediates the pathogenesis and development of autoimmune diseases such as RA. This review summarizes the role of tryptophan (Trp), kynurenine (Kyn) and other metabolites in this metabolic pathway, as well as the role of rate-limiting enzymes indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2) and tryptophan-2,3-dioxygenase 2 (TDO2) in mediating RA inflammatory immune response and synovitis inflammation. This provides an important basis for elucidating the new pathological mechanism of RA and discovering new drug targets.
Key words:    rheumatoid arthritis    immunometabolism    tryptophan    kynurenine    indoleamine 2,3-dioxygenase 1    indoleamine 2,3-dioxygenase 2    tryptophan-2,3-dioxygenase 2   
收稿日期: 2019-04-04
DOI: 10.16438/j.0513-4870.2019-0244
基金项目: 国家自然科学基金面上项目(81573443,81673444);安徽省自然科学杰出青年基金项目(170808J10);2016年高校优秀青年人才支持计划重点项目(gxyqZD2016043).
通讯作者: 魏伟,Tel:86-551-65161209,Fax:86-551-65161208,E-mail:wwei@ahmu.edu.cn
Email: wwei@ahmu.edu.cn
相关功能
PDF(1120KB) Free
打印本文
0
作者相关文章
常艳  在本刊中的所有文章
魏伟  在本刊中的所有文章

参考文献:
[1] Mathis D, Shoelson SE. Immunometabolism:an emerging frontier[J]. Nat Rev Immunol, 2011, 11:81.
[2] O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol, 2016, 16:553-565.
[3] Ganeshan K, Chawla A. Metabolic regulation of immune responses[J]. Annu Rev Immunol, 2014, 32:609-634.
[4] Rathmell JC. Metabolism and autophagy in the immune system:immunometabolism comes of age[J]. Immuno Rev, 2012, 249:5-13.
[5] Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders[J]. Nature, 2017, 542:177-185.
[6] Arts RJW, Joosten LAB. The potential role of trained immunity in autoimmune and autoinflammatory disorders[J]. Front Immunol, 2018, 9:298.
[7] Weyand CM, Zeisbrich M. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis[J]. Curr Opin Immunol, 2017, 46:112-120.
[8] Morel L. Immunometabolism in systemic lupus erythematosus[J]. Nat Rev Rheumatol, 2017, 13:280-290.
[9] Shah M, Edman MC, Janga SR, et al. A rapamycin-binding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjögren's syndrome[J]. J Control Release, 2013, 171:269-279.
[10] Chen Z, Bozec A, Ramming A, et al. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis[J]. Nat Rev Rheumatol, 2019, 15:9-17.
[11] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324:1029-1033.
[12] Kubota K, Ito K, Morooka M, et al. Whole-body FDG-PET/CT on rheumatoid arthritis of large joints[J]. Ann Nucl Med, 2009, 23:783-791.
[13] Biniecka M, Canavan M, McGarry T, et al. Dysregulated bioenergetics:a key regulator of joint inflammation[J]. Ann Rheum Dis, 2016, 75:2192-2200.
[14] Ahn JK, Kim S, Hwang J, et al. GC/TOF-MS-based metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid arthritis[J]. Joint Bone Spine, 2016, 83:707-713.
[15] Guma M, Sanchez-Lopez E, Lodi A, et al. Choline kinase inhibition in rheumatoid arthritis[J]. Ann Rheum Dis, 2015, 74:1399-1407.
[16] Volchenkov R, Dung Cao M, Elgstøen KB, et al. Metabolic profiling of synovial tissue shows altered glucose and choline metabolism in rheumatoid arthritis samples[J]. Scand J Rheumatol, 2017, 46:160-161.
[17] Garcia-Carbonell R, Divakaruni AS, Lodi A, et al. Critical role of fibroblast-like synoviocytes glycolytic metabolism in rheumatoid arthritis[J]. Arthritis Rheumatol, 2016, 68:1614-1626.
[18] Fearon U, Canavan M, Biniecka M, et al. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis[J]. Nat Rev Rheumatol, 2016, 12:385-397.
[19] Yang Z, Fujii H, Mohan SV, et al. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells[J]. J Exp Med, 2013, 210:2119-2134.
[20] Yang Z, Shen Y, Oishi H, et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis[J]. Sci Transl Med, 2016, 8:331ra38.
[21] Perl A. Review:metabolic control of immune system activation in rheumatic diseases[J]. Arthritis rheumatol, 2017, 69:2259-2270.
[22] Timmerman LA, Holton T, Yuneva M, et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target[J]. Cancer Cell, 2013, 24:450-465.
[23] Perez-Aso M, Montesinos MC, Mediero A, et al. Apremilast, a novel phosphodiesterase 4(PDE4) inhibitor, regulates inflammation through multiple cAMP downstream effectors[J]. Arthritis Res Ther, 2015, 17:249.
[24] Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity andtrafficking[J]. Mol Biol Cell, 2007, 18:1437-1446.
[25] Perl A. Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases[J]. Nat Rev Rheumatol, 2016, 12:169-182.
[26] Cheong JE, Sun L. Targeting the IDO1/TDO2-KYN-AhR pathway for cancer immunotherapy-challenges and opportunities[J]. Trends Pharmacol Sci, 2018, 39:307-325.
[27] Cervenka I, Agudelo LZ, Ruas JL. Kynurenines:tryptophan's metabolites in exercise, inflammation, and mental health[J]. Science, 2017. DOI:10.1126/science.aaf9794.
[28] Lim CK, Fernández-Gomez FJ, Braidy N, et al. Involvement of the kynurenine pathway in the pathogenesis of Parkinson's disease[J]. Prog Neurobiol, 2017, 155:76-95.
[29] Vécsei L, Szalárdy L, Fülöp F, et al. Kynurenines in the CNS:recent advances and new questions[J]. Nat Rev Drug Discov, 2013, 12:64-82.
[30] Liu Z, Dai H, Wan N, et al. Suppression of memory CD8 T cell generation and function by tryptophan catabolism[J]. J Immunol, 2007, 178:4260-4266.
[31] Munn DH, Sharma MD, Baban B, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase[J]. Immunity, 2005, 22:633-642.
[32] Frumento G, Rotondo R, Tonetti M, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase[J]. J Exp Med, 2002, 196:459-468.
[33] Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism[J]. Cell Death Differ, 2002, 9:1069-1077.
[34] Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism[J]. Science, 1998, 281:1191-1193.
[35] Bauer TM, Jiga LP, Chuang JJ, et al. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase:tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo[J]. Transpl Int, 2005, 18:95-100.
[36] Nguyen NT, Kimura A, Nakahama T, et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via kynurenine-dependent mechanism[J]. Proc Natl Acad Sci U S A, 2010, 107:19961-19966.
[37] Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses[J]. Trends Immunol, 2013, 34:137-143.
[38] Opitz CA, Litzenburger UM, Sahm F, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor[J]. Nature, 2011, 478:197-203.
[39] Lahoti TS, John K, Hughes JM, et al. Aryl hydrocarbon receptor antagonism mitigates cytokine-mediated inflammatory signalling in primary human fibroblast-like synoviocytes[J]. Ann Rheum Dis, 2013, 72:1708-1716.
[40] Yan Y, Zhang GX, Gran B, et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis[J]. J Immunol, 2010, 185:5953-5961.
[41] Hertenstein A, Schumacher T, Litzenburger U, et al. Suppression of human CD4+ T cell activation by 3,4-dimethoxycinnamonyl-anthranilic acid (tranilast) is mediated by CXCL9 and CXCL10[J]. Biochem Pharmacol, 2011, 82:632-641.
[42] Desvignes L, Ernst JD. Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis[J]. Immunity, 2009, 31:974-985.
[43] Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce regulatory phenotype in naive T cells[J]. J Immunol, 2006, 176:6752-6761.
[44] Bett IM. Metabolism of tryptophan in rheumatoid arthritis[J]. Ann Rheum Dis, 1962, 21:63-69.
[45] Pinals RS. Tryptophan metabolism in rheumatic disease[J]. Arthritis Rheum, 1964, 7:662.
[46] Flinn JH, Price JM, Yess N, et al. Excretion of tryptophan metabolites by patients with rheumatoid arthritis[J]. Arthritis Rheum, 1964, 7:201.
[47] Schroecksnadel K, Kaser S, Ledochowski M, et al. Increased degradation of tryptophan in blood of patients with rheumatoid arthritis[J]. J Rheumatol, 2003, 30:1935-1939.
[48] Spiera H, Lefkovits AM. Remission of psoriasis with low dietary tryptophan[J]. Lancet, 1967, 2:137-139.
[49] Schroecksnadel K, Winkler C, Duftner C, et al. Tryptophan degradation increases with stage in patients with rheumatoid arthritis[J]. Clin Rheumatol, 2006, 25:334-337.
[50] Kang KY, Lee SH, Jung SM, et al. Downregulation of tryptophan-related metabolomic profile in rheumatoid arthritis synovial fluid[J]. J Rheumatol, 2015, 42:2003-2011.
[51] Kolodziej L. Systemic metabolism of tryptophan and its catabolites, kynurenine and 3-HAA, in mice with inflammatory arthritis[J]. Gene, 2013, 512:23-27.
[52] Qi Y, Pi Z, Liu S, et al. A metabonomic study of adjuvant-induced arthritis in rats using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry[J]. Mol Biosyst, 2014, 10:2617-2625.
[53] Criado G, Simelyte E, Inglis JJ, et al. Indoleamine 2,3 dioxygenase-mediated tryptophan catabolism regulates accumulation of Th1/Th17 cells in the joint in collagen-induced arthritis[J]. Arthritis Rheum, 2009, 60:1342-1351.
[54] Inglis JJ, Criado G, Andrews M, et al. The anti-allergic drug, N-(3',4'-dimethoxycinnamonyl) anthranilic acid, exhibits potent anti-inflammatory and analgesic properties in arthritis[J]. Rheumatology(Oxford), 2007, 46:1428-1432.
[55] Nagate T, Tamura T, Sato F, et al. Tranilast suppresses the disease development of the adjuvant-and streptococcal cell wall-induced arthritis in rats[J]. J Pharmacol Sci, 2007, 105:48-56.
[56] Parada-Turska J, Rzeski W, Zgrajka W, et al. Kynurenic acid, an endogenous constituent of rheumatoid arthritis synovial fluid, inhibits proliferation of synoviocytes in vitro[J]. Rheumatol Int, 2006, 26:422-426.
[57] Cribbs AP, Kennedy A, Penn H, et al. Treg cell function in rheumatoid arthritis is compromised by CTLA-4 promoter methylation resulting in a failure to activate the indoleamine 2,3-dioxygenase pathway[J]. Arthritis Rheumatol, 2014, 66:2344-2354.
[58] Szántó S, Koreny T, Mikecz K, et al. Inhibition of indoleamine 2,3-dioxygenase-mediated tryptophan catabolism accelerates collagen-induced arthritis in mice[J]. Arthritis Res Ther, 2007, 9:R50.
[59] Bianco NR, Kim SH, Ruffner MA, et al. Therapeutic effect of exosomes from indoleamine 2,3-dioxygenase-positive dendritic cells in collagen-induced arthritis and delayed-type hypersensitivity disease models[J]. Arthritis Rheum, 2009, 60:380-389.
[60] Chen SY, Wu CL, Lai MD, et al. Amelioration of rat collagen-induced arthritis through CD4+ T cells apoptosis and synovial interleukin-17 reduction by indoleamine 2,3-dioxygenase gene therapy[J]. Hum Gene Ther, 2011, 22:145-154.
[61] Seo SK, Choi JH, Kim YH, et al. 4-1BB-mediated immunotherapy of rheumatoid arthritis[J]. Nat Med, 2004, 10:1088-1094.
[62] Filippini P, Del Papa N, Sambataro D, et al. Emerging concepts on inhibitors of indoleamine 2,3-dioxygenase in rheumatic diseases[J]. Curr Med Chem, 2012, 19:5381-5393.
[63] Scott GN, DuHadaway J, Pigott E, et al. The immunoregulatory enzyme IDO paradoxically drives B cell-mediated autoimmunity[J]. J Immunol, 2009, 182:7509-7517.
[64] Pigott E, Mandik-Nayak L. Addition of an indoleamine 2,3-dioxygenase inhibitor to B cell-depletion therapy blocks autoreactive B cell activation and recurrence of arthritis in K/BxN mice[J]. Arthritis Rheum, 2012, 64:2169-2178.
[65] Pigott E, DuHadaway JB, Muller AJ, et al. 1-Methyl-tryptophan synergizes with methotrexate to alleviate arthritis in a mouse model of arthritis[J]. Autoimmunity, 2014, 47:409-418.
[66] Löb S, Königsrainer A, Zieker D, et al. IDO1 and IDO2 are expressed in human tumors:levo-but not dextro-1-methyl tryptophan inhibits tryptophan catabolism[J]. Cancer Immunol Immunother, 2009, 58:153-157.
[67] Nevler A, Muller AJ, Sutanto-Ward E, et al. Host IDO2 gene status influences tumor progression and radiotherapy response in KRAS-driven sporadic pancreatic cancers[J]. Clin Cancer Res, 2019, 25:724-734.
[68] Merlo LMF, Pigott E, DuHadaway JB, et al. IDO2 is a critical mediator of autoantibody production and inflammatory pathogenesis in a mouse model of autoimmune arthritis[J]. J Immunol, 2014, 192:2082-2090.
[69] Merlo LMF, Grabler S, DuHadaway JB, et al. IDO2 modulates T cell-dependent autoimmune responses through a B cell-intrinsic mechanism[J]. J Immunol, 2016, 196:4487-4497.
[70] Merlo LMF, Grabler S, DuHadaway JB, et al. Therapeutic antibody targeting of indoleamine-2,3-dioxygenase (IDO2) inhibits autoimmune arthritis[J]. Clin Immunol, 2017, 179:8-16.
[71] Trabanelli S, Očadlíková D, Ciciarello M, et al. The SOCS3-independent expression of IDO2 supports the homeostatic generation of T regulatory cells by human dendritic cells[J]. J Immunol, 2014, 192:1231-1240.
[72] Salter M, Hazelwood R, Pogson CI, et al. The effects of a novel and selective inhibitor of tryptophan 2,3-dioxygenase on tryptophan and serotonin metabolism in the rat[J]. Biochem Pharmacol, 1995, 49:1435-1442.
[73] Pilotte L, Larrieu P, Stroobant V, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase[J]. Proc Natl Acad Sci U S A, 2012, 109:2497-2502.
[74] Wei W. Soft regulation of inflammatory immune responses[J]. Chin Pharmacol Bull (中国药理学通报), 2016, 32:297-303.