药学学报, 2019, 54(9): 1574-1581
引用本文:
袁世睿, 祁小乐, 秦晨, 吴正红. 铁蛋白纳米笼用于药物递送系统的研究进展[J]. 药学学报, 2019, 54(9): 1574-1581.
YUAN Shi-rui, QI Xiao-le, QIN Chen, WU Zheng-hong. Research progress of ferritin nanocage for drug delivery systems[J]. Acta Pharmaceutica Sinica, 2019, 54(9): 1574-1581.

铁蛋白纳米笼用于药物递送系统的研究进展
袁世睿, 祁小乐, 秦晨, 吴正红
中国药科大学药学院, 江苏 南京 211198
摘要:
铁蛋白纳米笼是一种广泛存在于生物体内的天然纳米粒,具有良好的生物相容性、特异的主动靶向性及易于制备和自组装等性质,使其在生物医药领域表现出良好的应用前景。本文综述了铁蛋白纳米笼的结构特性、表面修饰方法及其在药物递送、医学成像及疾病诊疗等方面的应用进展,并对其研究前景进行了总结与展望。
关键词:    铁蛋白      修饰      药物递送系统      诊断成像      治疗     
Research progress of ferritin nanocage for drug delivery systems
YUAN Shi-rui, QI Xiao-le, QIN Chen, WU Zheng-hong
School of Pharmaceutical Science, China Pharmaceutical University, Nanjing 211198, China
Abstract:
As a widely existing natural nanoparticle in living organisms, ferritin nanocage was proven to be a potential nanomaterial in the biomedical field, due to its excellent biocompatibility, specific active targeting properties, ease for preparation or modification, and unique self-assembly properties. This review presents an overview of ferritin nanocage in structural characteristics, surface modifications, and outlines its practical applications for drug delivery, medical imaging, as well as disease diagnosis or treatment. The researches of ferritin nanocage as drug carriers are classified and summarized in carrying different kinds of chemical components of drugs or nucleic acid according to different characteristics. Finally, the prospects in the development of ferritin nanocage are also outlined.
Key words:    ferritin    modification    drug delivery system    diagnostic imaging    therapy   
收稿日期: 2019-06-13
DOI: 10.16438/j.0513-4870.2019-0471
基金项目: 中国药科大学双一流国际药品注册创新团队(CPU2018GY40).
通讯作者: 吴正红,Tel:86-25-83179703,Fax:86-25-83271414,E-mail:zhenghongwu66@cpu.edu.cn
Email: zhenghongwu66@cpu.edu.cn
相关功能
PDF(2636KB) Free
打印本文
0
作者相关文章
袁世睿  在本刊中的所有文章
祁小乐  在本刊中的所有文章
秦晨  在本刊中的所有文章
吴正红  在本刊中的所有文章

参考文献:
[1] Pelaz B, Alexiou CH, Alvarez-puebla RA, et al. Diverse applications of nanomedicine[J]. ACS Nano, 2017, 11:2313-2381.
[2] Maham A, Tang ZW, Wu H, et al. Protein-based nanomedicine platforms for drug delivery[J]. Small, 2009, 5:1706-1721.
[3] Truffi M, Fiandra L, Sorrentino L, et al. Ferritin nanocages:a biological platform for drug delivery, imaging and theranostics in cancer[J]. Pharmacol Res, 2016, 107:57-65.
[4] Harrison PM, Arosio P. Ferritins:molecular properties, iron storage function and cellular regulation[J]. Biochim Biophys Acta, 1996, 1275:161-203.
[5] Fan KL, Gao LZ, Yan XY. Human ferritin for tumor detection and therapy[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2013, 5:287-298.
[6] Theil EC, Behera RK, Tosha T. Ferritins for chemistry and for life[J]. Coord Chem Rev, 2013, 257:579-586.
[7] Zhen ZP, Tang W, Todd T, et al. Ferritins as nanoplatforms for imaging and drug delivery[J]. Expert Opin Drug Deliv, 2014, 11:1913-1922.
[8] Arosio P, Ingrassia R, Cavadini P. Ferritins:a family of molecules for iron storage, antioxidation and more[J]. Biochim Biophys Acta, 2009, 1790:589-599.
[9] Heger Z, Skalickova S, Zitka O, et al. Apoferritin applications in nanomedicine[J]. Nanomedicine, 2014, 9:2233-2245.
[10] Surguladze N, Patton S, Cozzi A, et al. Characterization of nuclear ferritin and mechanism of translocation[J]. Biochem J, 2005, 388:731-740.
[11] Uto K, Yamamoto K, Kishimoto N, et al. Characterization of stable, electroactive protein cage/synthetic polymer multilayer thin films prepared by layer-by-layer assembly[J]. J Nanopart Res, 2013, 15:1516.
[12] Theil EC. Ferritin:structure, gene regulation, and cellular function in animals, plants, and microorganisms[J]. Annu Rev Biochem, 1987, 56:289-315.
[13] Lee EJ, Lee NK, Kim IS. Bioengineered protein-based nanocage for drug delivery[J]. Adv Drug Deliv Rev, 2016, 106:157-171.
[14] Li L, Fang CJ, Ryan JC, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1[J]. Proc Natl Acad Sci U S A, 2010, 107:3505-3510.
[15] Torti FM, Torti SV. Regulation of ferritin genes and protein[J]. Blood, 2002, 99:3505-3516.
[16] 2FHA:Human H chain ferritin[DB/OL]. New York:Brookhaven National Laboratory, 1997[2019-07-08]. http://www.rcsb.org/structure/2FHA.
[17] Kim M, Rho Y, Jin KS, et al. pH-dependent structures of ferritin and apoferritin in solution:disassembly and reassembly[J]. Biomacromolecules, 2011, 12:1629-1640.
[18] Belletti D, Pederzoli F, Forni F, et al. Protein cage nanostructure as drug delivery system:magnifying glass on apoferritin[J]. Expert Opin Drug Deliv, 2017, 14:825-840.
[19] Molino NM, Wang SW. Caged protein nanoparticles for drug delivery[J]. Curr Opin Biotechnol, 2014, 28:75-82.
[20] Zhen ZP, Tang W, Chen HM, et al. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors[J]. ACS Nano, 2013, 7:4830-4837.
[21] He D, Marles-Wright J. Ferritin family proteins and their use in bionanotechnology[J]. New Biotechnol, 2015, 32:651-657.
[22] Uchida M, Kang S, Reichhardt C, et al. The ferritin superfamily:supramolecular templates for materials synthesis[J]. Biochim Biophys Acta, 2010, 1800:834-845.
[23] Yang CY, Cao CQ, Cai Y, et al. The surface modification of ferritin and its applications[J]. Prog Chem (化学进展), 2016, 28:91-102.
[24] Lin X, Xie J, Niu G, et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging[J]. Nano Lett, 2011, 11:814-819.
[25] Lin X, Xie J, Zhu L, et al. Hybrid ferritin nanoparticles as activatable probes for tumor imaging[J]. Angew Chem Int Ed, 2011, 50:1569-1572.
[26] Marchesi VT, Tillack TW, Jackson RL, et al. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane[J]. Proc Natl Acad Sci U S A, 1972, 69:1445-1449.
[27] Hainfeld JF. Uranium-loaded apoferritin with antibodies attached-molecular design for uranium neutron-capture therapy[J]. Proc Natl Acad Sci U S A, 1992, 89:11064-11068.
[28] Zhen ZP, Tang W, Zhang WZ, et al. Folic acid conjugated ferritins as photosensitizer carriers for photodynamic therapy[J]. Nanoscale, 2015, 7:10330-10333.
[29] Dostalova S, Cerna T, Hynek D, et al. Site-directed conjugation of antibodies to apoferritin nanocarrier for targeted drug delivery to prostate cancer cells[J]. ACS Appl Mater Interfaces, 2016, 8:14430-14441.
[30] Fracasso G, Falvo E, Colotti G, et al. Selective delivery of doxorubicin by novel stimuli-sensitive nano-ferritins overcomes tumor refractoriness[J]. J Control Release, 2016, 239:10-18.
[31] de Turris V, Trabuco MC, Peruzzi G, et al. Humanized archaeal ferritin as a tool for cell targeted delivery[J]. Nanoscale, 2017, 9:647-655.
[32] Luo YN, Wang X, Du D, et al. Hyaluronic acid-conjugated apoferritin nanocages for lung cancer targeted drug delivery[J]. Biomater Sci, 2015, 3:1386-1394.
[33] Pontillo N, Pane F, Messori L, et al. Cisplatin encapsulation within a ferritin nanocage:a high-resolution crystallographic study[J]. Chem Commun, 2016, 52:4136-4139.
[34] Bellini M, Mazzucchelli S, Galbiati E, et al. Protein nanocages for self-triggered nuclear delivery of DNA-targeted chemotherapeutics in cancer cells[J]. J Control Release, 2014, 196:184-196.
[35] Liang MM, Fan KL, Zhou M, et al. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection[J]. Proc Natl Acad Sci U S A, 2014, 111:14900-14905.
[36] Ghosh S, Mohapatra S, Thomas A, et al. Apoferritin nanocage delivers combination of microtubule and nucleus targeting anticancer drugs[J]. ACS Appl Mater Interfaces, 2016, 8:30824-30832.
[37] Lei YF, Hamada Y, Li J, et al. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression[J]. J Control Release, 2016, 232:131-142.
[38] Li L, Muñoz-Culla M, Carmona U, et al. Ferritin-mediated siRNA delivery and gene silencing in human tumor and primary cells[J]. Biomaterials, 2016, 98:143-151.
[39] Lee EJ, Lee SJ, Kang YS, et al. Engineered proteinticles for targeted delivery of siRNA to cancer cells[J]. Adv Funct Mater, 2015, 25:1279-1286.
[40] Yang Z, Wang XY, Diao HJ, et al. Encapsulation of platinum anticancer drugs by apoferritin[J]. Chem Commun, 2007, (33):3453-3455.
[41] Falvo E, Tremante E, Fraioli R, et al. Antibody-drug conjugates:targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin[J]. Nanoscale, 2013, 5:12278-12285.
[42] Fujita K, Tanaka Y, Sho T, et al. Intracellular CO release from composite of ferritin and ruthenium carbonyl complexes[J]. J Am Chem Soc, 2014, 136:16902-16908.
[43] Tesarova B, Charousova M, Dostalova S, et al. Folic acid-mediated re-shuttling of ferritin receptor specificity towards a selective delivery of highly cytotoxic nickel(Ⅱ) coordination compounds[J]. Int J Biol Macromol, 2019, 126:1099-1111.
[44] Ruozi B, Veratti P, Vandelli MA, et al. Apoferritin nanocage as streptomycin drug reservoir:technological optimization of a new drug delivery system[J]. Int J Pharm, 2017, 518:281-288.
[45] Maham A, Wu H, Wang J, et al. Apoferritin-based nanomedicine platform for drug delivery:equilibrium binding study of daunomycin with DNA[J]. J Mater Chem, 2011, 21:8700-8708.
[46] Zhang P, Xu N, Zhou L, et al. A linear polyethylenimine mediated siRNA-based therapy targeting human epidermal growth factor receptor in SPC-A1 xenograft mice[J]. Transl Resp Med, 2013, 1:2.
[47] Naldini L. Gene therapy returns to centre stage[J]. Nature, 2015, 526:351-360.
[48] Fantechi E, Innocenti C, Zanardelli M, et al. A smart platform for hyperthermia application in cancer treatment:cobalt-doped ferrite nanoparticles mineralized in human ferritin cages[J]. ACS Nano, 2014, 8:4705-4719.
[49] Cao CQ, Wang XX, Cai Y, et al. Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers[J]. Adv Mater, 2014, 26:2566-2571.
[50] Huang P, Rong PF, Jin A, et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy[J]. Adv Mater, 2014, 26:6401-6408.
[51] Crich SG, Bussolati B, Tei L, et al. Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe[J]. Cancer Res, 2006, 66:9196-9201.
[52] Aime S, Cabella C, Colombatto S, et al. Insights into the use of paramagnetic Gd(Ⅲ) complexes in MR-molecular imaging investigations[J]. J Magn Reson Imaging, 2002, 16:394-406.
[53] Fan KL, Cao CQ, Pan YX, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues[J]. Nat Nanotechnol, 2012, 7:459-464.
[54] Wang ZT, Huang P, Jacobson O, et al. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics[J]. ACS Nano, 2016, 10:3453-3460.
[55] Kanekiyo M, Wei CJ, Yassine HM, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies[J]. Nature, 2013, 499:102-106.
[56] Wang ZT, Xu LF, Yu H, et al. Ferritin nanocage-based antigen delivery nanoplatforms:epitope engineering for peptide vaccine design[J]. Biomater Sci, 2019, 7:1794-1800.
相关文献:
1.张佳, 赵婷, 敦洁宁, 孙明贤, 黄荣荣, 向柏, 白靖, 曹德英.门控型药物递送系统研究进展[J]. 药学学报, 2019,54(6): 1017-1025
2.邓承莲, 邹佳, 宋海峰.抗CD20治疗性单克隆抗体的研究进展[J]. 药学学报, 2013,48(10): 1515-1520
3.曾 萍 彭明利 徐 溢.PLGA微粒/纳米粒基因载体的研究进展[J]. 药学学报, 2010,45(11): 1346-1353
4.李英;刘克良;恽榴红.肽核酸研究进展[J]. 药学学报, 1999,34(3): 235-240