药学学报, 2019, 54(9): 1636-1644
引用本文:
张世明, 齐冬梅, 曹艺明, 周洪雷, 蒋海强, 李运伦, 张倩. 钩藤干预自发性高血压大鼠肝脏代谢紊乱的脂质组学研究[J]. 药学学报, 2019, 54(9): 1636-1644.
ZHANG Shi-ming, QI Dong-mei, CAO Yi-ming, ZHOU Hong-lei, JIANG Hai-qiang, LI Yun-lun, ZHANG Qian. Lipidomics study on intervention by Uncaria on hepatic metabolic disorder in spontaneously hypertensive rats[J]. Acta Pharmaceutica Sinica, 2019, 54(9): 1636-1644.

钩藤干预自发性高血压大鼠肝脏代谢紊乱的脂质组学研究
张世明1, 齐冬梅2, 曹艺明1, 周洪雷1, 蒋海强2, 李运伦3, 张倩1
1. 山东中医药大学药学院, 山东 济南 250355;
2. 山东中医药大学实验中心, 山东 济南 250355;
3. 山东中医药大学附属医院, 山东 济南 250300
摘要:
本文通过脂质组学方法研究钩藤干预自发性高血压大鼠肝脏脂质代谢物的变化,探索钩藤的作用机制。所有实验过程均获得了山东中医药大学实验中心动物保护和使用委员会的批准。实验中采用UHPLC-Q Extractive轨道阱高分辨质谱采集大鼠肝脏脂质代谢物信息,经模式识别,识别显著差异的物质,通过质谱和数据库检索鉴定潜在生物标志物。模式识别结果显示正常组与SHR组明显分开,高血压大鼠与正常大鼠相比,磷脂酰胆碱、甘油二酯、磷脂酸和鞘磷脂含量减少;溶血磷脂酰胆碱、甘油三酯、亚油酸、花生四烯酸和鞘磷脂含量增多。钩藤乙醇提取物通过干预甘油磷脂代谢通路、鞘脂代谢通路、亚油酸代谢通路、花生四烯酸代谢通路改善脂质代谢紊乱的状态。本研究揭示了钩藤干预脂质代谢的机制,在阐释中药作用方面显示出了独特的潜力。
关键词:    脂质组学      肝脏      自发性高血压大鼠      钩藤      高分辨质谱     
Lipidomics study on intervention by Uncaria on hepatic metabolic disorder in spontaneously hypertensive rats
ZHANG Shi-ming1, QI Dong-mei2, CAO Yi-ming1, ZHOU Hong-lei1, JIANG Hai-qiang2, LI Yun-lun3, ZHANG Qian1
1. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
2. Experiment Center of Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
3. Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250300, China
Abstract:
In this paper, the lipidomics was used to analyze the changes to address how Uncaria interrupts lipid metabolism in the liver of spontaneously hypertensive rats, and to explore the mechanism of action of Uncaria. All the experiments were approved by the animal protection and use committee of Shandong University of Traditional Chinese Medicine. UHPLC-Q Extractive orbitrap high-resolution mass spectrometry was used to collect lipid metabolite information of the rat livers. Through pattern recognition, matters with noticeable differences were recognized. Mass spectrum and data base searching helped to identify the potential biomarkers. Pattern recognition results indicated that the rats from control versus SHR group showed clear differences. Compared with the rats from the control group, there are decreases in sphosphatidylcholine, phosphatidic acid, diacylglycerol and sphingomyelin in rats from the SHR group, however lysophosphatidylcholine, triglyceride, linoleic acid, arachidonic acid and ceramide are increased. Uncaria could regulate the disorder of lipid metabolism by interfering with glycerophospholipid, sphingolipid, linoleic acid, and arachidonic acid metabolic pathways. This study provided the mechanistic understanding of the impact of Uncaria on lipid metabolism and revealed the lipid metabolism pathways affected to offer the explanation for the complex mechanism of action.
Key words:    lipidomics    liver    spontaneous hypertensive rat    Uncaria    high resolution mass spectrometry   
收稿日期: 2019-03-10
DOI: 10.16438/j.0513-4870.2019-0164
基金项目: 国家自然科学基金资助项目(81774173);山东省博士基金资助项目(ZR2016HB50);山东省重大科技创新工程项目(2017CXGC1307);山东省重点研发计划资助项目(2018GSF119007).
通讯作者: 蒋海强,Tel:15966050664,E-mail:jhq12723@163.com
Email: jhq12723@163.com
相关功能
PDF(1322KB) Free
打印本文
0
作者相关文章
张世明  在本刊中的所有文章
齐冬梅  在本刊中的所有文章
曹艺明  在本刊中的所有文章
周洪雷  在本刊中的所有文章
蒋海强  在本刊中的所有文章
李运伦  在本刊中的所有文章
张倩  在本刊中的所有文章

参考文献:
[1] Nikolic SB, Sharman JE, Adams MJ, et al. Metabolomics in hypertension[J]. J Hypertens, 2014, 32:1159-1169.
[2] He J, Gu D, Chen J, et al. Premature deaths attributable to blood pressure in China:a prospective cohort study[J]. Lancet, 2009, 374:1765-1772.
[3] Zhu ZM, Wang HJ, Yu RX, et al. Lipidomics analysis of liver in hypertension with syndrome of upper hyperactivity of liver yang rats[J]. Chin J Tradit Chin Med Pharm (中华中医药杂志), 2018, 33:5361-5365.
[4] Hinterwirth H, Stegemann C, Mayr M. Lipidomics:Quest for Molecular Lipid Biomarkers in Cardiovascular Disease[J]. Circ Cardiovasc Genet, 2014, 7:941-954.
[5] Farwanah H, Kolter T. Lipidomics of glycosphingolipids[J]. Metabolites, 2012, 2:134-164.
[6] Eshigina S, Gapparov MM, Mal'Tsev GI, et al. Influence of dietary therapy containing sunflower oil fortified with phospholipids on the lipid metabolism in patients with hypertension and obesity[J]. Vopr Pitan, 2007, 76:58-62.
[7] Arnold C, Markovic M, Blossey K, et al. Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of ω-3 fatty acids[J]. J Biol Chem, 2010, 285:32720-32733.
[8] Zheng W, Kollmeyer J, Symolon H, et al. Ceramides and other bioactive sphingolipid backbones in health and disease:lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy[J]. Biochim Biophys Acta Biomembr, 2006, 1758:1864-1884.
[9] Law SH, Chan ML, Marathe GK, et al. An updated review of lysophosphatidylcholine metabolism in human diseases[J]. Int J Mol Sci, 2019, 20:1149-1173.
[10] Zhu Y, Liu H, Zhang M, et al. Fatty liver diseases, bile acids, and FXR[J]. Acta Pharm Sin B, 2016, 6:409-412.
[11] Kwong E, Li Y, Hylemon PB, et al. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism[J]. Acta Pharm Sin B, 2015, 5:151-157.
[12] Chen H, Chen L, Liu D, et al. Combined clinical phenotype and lipidomic analysis reveals the impact of chronic kidney disease on lipid metabolism[J]. J Proteome Res, 2017, 16:1566-1578.
[13] Walther A, Cannistraci CV, Simons K, et al. Lipidomics in major depressive disorder:a systematic review[J]. Front Psychiatry, 2018, 9:459-470.
[14] Nam M, Choi MS, Jung S, et al. Lipidomic profiling of liver tissue from obesity-prone and obesity-resistant mice fed a high fat diet[J]. Sci Rep, 2015, 5:16984.
[15] Nguyen P, Leray V, Diez M, et al. Liver lipid metabolism[J]. J Anim Physiol Anim Nutr (Berl), 2008, 92:272-283.
[16] Graessler J, Schwudke D, Schwarz PE, et al. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients[J]. PLoS One, 2009, 4:e6261.
[17] Xie J, Jiang HQ, Li YL, et al. Study on the intervention effects of Pinggan prescription on spontaneously hypertensive rats based on metabonomic and pharmacodynamic methods[J]. Chin J Integr Med, 2019, 25:348-353.
[18] Donovan EL, Pettine SM, Hickey MS, et al. Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean[J]. Diabetol Metab Syndr, 2013, 5:24-37.
[19] Miao QY, Gao W, Li J, et al. Progress on lipidomics analytical methods and their applications in studies of traditional Chinese medicines[J]. China J Chin Mater Med (中国中药杂志), 2019, 44:1760-1766.
[20] Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry:a bridge to lipidomics[J]. J Lipid Res, 2010, 24:1071-1079.
[21] Yang K, Han X. Lipidomics:techniques, applications, and outcomes related to biomedical sciences[J]. Trends Biochem Sci, 2016, 41:954-969.
[22] Han XL. Lipidomics for studying metabolism[J]. Nat Rev Endocrinol, 2016, 12:668-679.
[23] Kulkarni H, Meikle PJ, Mamtani M, et al. Plasma lipidomic profile signature of hypertension in Mexican American families:specific role of diacylglycerols[J]. Hypertension, 2013, 62:453-454.
[24] Hu C, Kong H, Qu F, et al. Application of plasma lipidomics in studying the response of patients with essential hypertension to antihypertensive drug therapy[J]. Mol Biosyst. 2011, 7:3271-3279.
[25] Ho SC, Ho YF, Lai TH, et al. Traditional Chinese herbs against hypertension enhance memory acquisition[J]. Am J Chin Med, 2012, 33:787-795.
[26] Heitzman ME, Neto CC, Winiarz E, et al. Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae)[J]. Phytochemistry, 2005, 66:5-29.
[27] Sakakibara I, Terabayashi S, Kubo M, et al. Effect on locomotion of indole alkaloids from the hooks of Uncaria plants[J]. Phytomed, 1999, 6:163-168.
[28] Zhang F, Sun AS, Yu LM, et al. Effects of isorhynchophylline on angiotensin Ⅱ-induced proliferation in rat vascular smooth muscle cells[J]. J Pharm Pharmacol, 2009, 60:1673-1678.
[29] Tian YP, Jiang F, Li YL, et al. Evaluation of the anti-hypertensive effect of Tengfu Jiangya tablet by combination of UPLC-Q-exactive-MS-based metabolomics and iTRAQ-based proteomics technology[J]. Biomed Pharmacother, 2018, 100:324-334.
[30] Yang WQ, Li YL, Xie J, et al. Exploratory study of quantification diagnostic standard on common traditional Chinese medicine syndromes of hypertension[J]. Chin J Tradit Chin Med Pharm (中华中医药杂志), 2016, 31:2008-2012.
[31] Matyash V, Liebisch G, Kurzchalia TV, et al. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics[J]. J Lipid Res, 2008, 49:1137-1146.
[32] Wilson ID, Gika H, Theodoridis G, et al. Global metabolic profiling procedures for urine using UPLC-MS[J]. Nat Protoc, 2010, 5:1005-1018.
[33] A JY, He J, Sun RS. Multivariate statistical analysis for metabolomic data:the key points in principal component analysis[J]. Acta Pharm Sin (药学学报), 2018, 53:929-937.
[34] Zhang JX, Sun L, Pang J, et al. Non-targeted metabolomics in septic mice infected with Klebsiella pneumoniae[J]. Acta Pharm Sin (药学学报), 2018, 53:1122-1130.
[35] Wang DF, Wang YL, Wang YW, et al. Effect of Huangqin Tang on serum metabolic profile in rats with ulcerative colitis based on UHPLC-MS[J]. Acta Pharm Sin (药学学报), 2017, 52:108-114.
[36] Song J, Pang YY, Gao L, et al. Effects of Scutellaria baicalensis Georgi flowers on D-galactose induced aging in rats based on serum metabolomics[J]. Acta Pharm Sin (药学学报), 2019, 54:533-539.
[37] Byeon SK, Lee JY, Moon MH. Optimized extraction of phospholipids and lysophospholipids for nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry[J]. Analyst, 2011, 137:451-458.
[38] Stübiger G, Pittenauer E, Allmaier G. MALDI seamless postsource decay fragment ion analysis of sodiated and lithiated phospholipids[J]. Anal Chem, 2008, 80:1664-1678.
[39] Borodzicz S, Czarzasta K, Kuch M, et al. Sphingolipids in cardiovascular diseases and metabolic disorders[J]. Lipids Health Dis, 2015, 14:55-63.
[40] Berry C. Angiotensin receptors:signaling, vascular pathophysiology, and interactions with ceramide[J]. Am J Physiol Heart Circ Physiol, 2001, 281:H2337-H2365.
[41] Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems-an overview[J]. Acta Pharm Sin B, 2013, 3:361-372.
[42] Lundman P, Eriksson M, Schenckgustafsson K, et al. Transient triglyceridemia decreases vascular reactivity in young, healthy men without risk factors for coronary heart disease[J]. Circulation, 1997, 96:3266-3268.
[43] Cahova M, Chrastina P, Hansikova H, et al. Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats[J]. Appl Physiol Nutr Metab, 2015, 40:280-291.
[44] Mari M, Fernandez-Checa JC. Sphingolipid signalling and liver diseases[J]. Liver Int, 2007, 27:440-450.