药学学报, 2019, 54(9): 1645-1654
引用本文:
陈奕君, 吴浩, 魏紫奕, 陈炼明, 董姣姣, 刘洁, 贾志鑫, 肖红斌. 基于UHPLC-Q-TOF-MS/MS的紫菀药材全成分解析[J]. 药学学报, 2019, 54(9): 1645-1654.
CHEN Yi-jun, WU Hao, WEI Zi-yi, CHEN Lian-ming, DONG Jiao-jiao, LIU Jie, JIA Zhi-xin, XIAO Hong-bin. Identification of chemical constituents in Aster tataricus by UHPLC-Q-TOF-MS[J]. Acta Pharmaceutica Sinica, 2019, 54(9): 1645-1654.

基于UHPLC-Q-TOF-MS/MS的紫菀药材全成分解析
陈奕君1,2, 吴浩1, 魏紫奕1, 陈炼明1, 董姣姣1, 刘洁3, 贾志鑫3, 肖红斌1,2
1. 北京中医药大学中药学院, 北京 100029;
2. 北京中医药大学北京市方剂与证候研究重点实验室, 北京 100029;
3. 北京中医药大学北京中医药研究院, 北京 100029
摘要:
紫菀是临床常用的润肺祛痰止咳药,对于呼吸系统疾病的疗效显著。为全面阐明紫菀的化学成分组成,本研究采用超高效液相色谱-四级杆飞行时间串联质谱联用技术(UHPLC-Q-TOF-MS/MS),建立了一种组合的数据采集及相应的数据挖掘策略。从紫菀中共鉴定了132个化学成分,包括43个萜类、31个黄酮类、22个有机酸类、18个肽类、9个香豆素类、3个甾体类、3个蒽醌类及3个醛类化合物。其中,有59个成分通过与对照品进行比对而确认。本研究不仅可以为紫菀成分的全面解析提供可靠的数据支撑,同时也可以为其他中药及中药复方的药效物质发现提供高效的数据采集及挖掘策略。
关键词:    紫菀      UHPLC-Q-TOF-MS/MS      数据采集及挖掘      全成分解析     
Identification of chemical constituents in Aster tataricus by UHPLC-Q-TOF-MS
CHEN Yi-jun1,2, WU Hao1, WEI Zi-yi1, CHEN Lian-ming1, DONG Jiao-jiao1, LIU Jie3, JIA Zhi-xin3, XIAO Hong-bin1,2
1. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China;
2. Beijing Key Laboratory of Syndrome Prescription Basic Research, Beijing University of Chinese Medicine, Beijing 100029, China;
3. Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
Abstract:
The root of Aster tataricus L. f. (RA) has been widely used in the clinic for moistening lung, dispelling phlegm and relieving cough because of its significant therapeutic effects on respiratory diseases. In this study, a systematic data acquisition and mining strategy was established aimed at solving the complexity of the traditional Chinese medicine using ultra high performance liquid chromatography coupled with quadruple time of flight mass spectrometry (UHPLC-Q-TOF-MS). A total of 132 chemical constituents, including 43 terpenes, 31 flavonoids, 22 organic acids, 18 peptides, 9 coumarins, 3 steroids, 3 anthraquinones and 3 aldehydes were identified or tentatively characterized, among which 59 components were confirmed by comparison with the standard references. Meanwhile, the accurate mass measurements of the identified components were all with ±5 ppm error. Therefore, this work provided not only reliable data supports for the comprehensive analysis of the chemical constituents in RA, but also provided an efficient data acquisition and mining strategy to profile the chemical constituents for other traditional Chinese medicine complex system.
Key words:    Aster tataricus    UHPLC-Q-TOF-MS/MS    data acquisition and mining    comprehensive components analysis   
收稿日期: 2019-03-28
DOI: 10.16438/j.0513-4870.2019-0214
基金项目: 国家新药创制重大专项资助项目(2018ZX09201008-001);国家自然科学基金资助项目(81774155,81803703);中央高校基本科研业务费专项资金资助项目(2019-JYB-XJSJJ-011).
通讯作者: 肖红斌,Tel:86-10-64286490,E-mail:hbxiao69@163.com
Email: hbxiao69@163.com
相关功能
PDF(945KB) Free
打印本文
0
作者相关文章
陈奕君  在本刊中的所有文章
吴浩  在本刊中的所有文章
魏紫奕  在本刊中的所有文章
陈炼明  在本刊中的所有文章
董姣姣  在本刊中的所有文章
刘洁  在本刊中的所有文章
贾志鑫  在本刊中的所有文章
肖红斌  在本刊中的所有文章

参考文献:
[1] Chinese Pharmacopoeia Commission. Pharmacopoeia of China(中国药典)[M]. Beijing:China Medical Science Press, 2015, 6:1341.
[2] Wu T, Chen ZJ, Hu YJ, et al. Experimental study on expectorant effect of different processing methods of Aster tataricus decoction pieces[J]. J Shanghai Univ Tradit Chin Med (上海中医药大学学报), 2006, 20:55-57.
[3] Yu P, Cheng S, Xiang J, et al. Expectorant, antitussive, anti-inflammatory activities and compositional analysis of Aster tataricus[J]. J Ethnopharmacol, 2015, 164:328-333.
[4] Chen LS, Zheng DS. Bioactive constituents from the rhizomes of Aster tataricus L. f. afford the treatment of asthma through activation of β2AR and inhibition of NF-κB[J]. Latin Am J Pharm, 2015, 34:291-295.
[5] Chen YJ, Dong JJ, Liu J, et al. Network pharmacology-based investigation of protective mechanism of Aster tataricus on lipopolysaccharide-induced acute lung injury[J]. Int J Mol Sci, 2019, 20:543-557.
[6] Du H, Zhang M, Yao KJ, et al. Protective effect of Aster tataricus extract on retinal damage on the virtue of its antioxidant and anti-inflammatory effect in diabetic rat[J]. Biomed Pharmacother, 2017, 89:617-622.
[7] Zhang YX, Wang QS, Wang T, et al. Inhibition of human gastric carcinoma cell growth in vitro by a polysaccharide from Aster tataricus[J]. Int J Biol Macromol, 2012, 51:509-513.
[8] Liu P, Yang H, Long F, et al. Bioactive equivalence of combinatorial components identified in screening of an herbal medicine[J]. Pharmacol Res, 2014, 31:1788-1800.
[9] Liu J, Xiao HB. Advances in basic research on pharmacodynamic substances of traditional Chinese medicine based on chromatography[J]. Acta Pharm Sin (药学学报), 2019, 54:73-81.
[10] Chen JF, Song YL, Guo XY, et al. Characterization of the herb-derived components in rats following oral administration of Carthamus tinctorius extract by extracting diagnostic fragment ions (DFIs) in the MSn chromatograms[J]. Analyst, 2014, 139:6474-6485.
[11] Han J, Sheng LS, Yang ZY, et al. High performance liquid chromatography/electrospray ionization mass spectrometric characterization of recombinant L-asparaginase Ⅱ[J]. Acta Pharm Sin (药学学报), 2001, 36:46-50.
[12] Liang J, Xu F, Zhang YZ, et al. The profiling and identification of the absorbed constituents and metabolites of Paeoniae Radix Rubra decoction in rat plasma and urine by the HPLC-DAD-ESI-IT-TOF-MS (n) technique:a novel strategy for the systematic screening and identification of absorbed[J]. J Pharm Biomed Anal, 2013, 83:108.
[13] Zhang CY, Li J, Gao JM, et al. The impurity profiling of paclitaxel and its injection by UPLC-MS/MS[J]. Acta Pharm Sin (药学学报), 2016, 51:965-971.
[14] Scheidweiler KB, Jarvis MJ, Huestis MA. Nontargeted SWATH acquisition for identifying 47 synthetic cannabinoid metabolites in human urine by liquid chromatography-high-resolution tandem mass spectrometry[J]. Anal Bioanal Chem, 2015, 407:883-897.
[15] Zhao DX, Hu BQ, Zhang M, et al. Simultaneous separation and determination of phenolic acids pentapeptides, and triterpenoid saponins in the root of Aster tataricus by high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry[J]. J Sep Sci, 2015, 38:571-575.
[16] Xu HM, Zheng GZ, Zhou WB, et al. Astins, six new chlorinated cyclopentapeptides from Aster tataricus[J]. Tetrahedron, 2013, 69:7964-7969.
[17] Xu HM, Zeng GZ, Zhou WB, et al. Astins K-P, six new chlorinated cyclopentapeptides from Aster tataricus[J]. Tetrahedron, 2013, 69:7964-7969.
[18] Kosemura S, Ogawa T, Totsuka K. Isolation and structure of asterin, a new halogenated cyclic penta-peptide from Aster tataricus[J]. Tetrahedron Lett, 1993, 34:1291-1294.
[19] Hiroshi M, Koichi T. Bioactive cyclic peptides from higher plants[J]. Heterocycles, 2010, 80:739-764.
[20] Zhu XC, Lu Y, Zhang CF, et al. Advances on peptides from Aster tataricus L.[J]. Chin Wild Plant Resour (中国野生植物资源), 2014, 33:32-36.
[21] Morita H, Nagashima S, Takeya K, et al. Cyclic peptides from higher plants. 12. structure of a new peptides, astin-J, from Aster tataricus[J]. Chem Pharm Bull, 1995, 43:271-273.
[22] Wang JJ, Zhang L, Guo Q, et al. Quantitative analysis of seven phenolic acids in eight Yinqiao Jiedu serial preparations by quantitative analysis of multi-components with single-marker[J]. Acta Pharm Sin (药学学报), 2015, 50:480-485.
[23] Li J, Li J, Jia JP, et al. Comparison of flower buds and leaves of Tussilago farfara L. by UHPLC-Q Extractive Hybrid Quadrupole Orbitrap Ms[J]. Acta Pharm Sin (药学学报), 2018, 53:444-452.
[24] Diaz JG, Carmona AJ, Torres F, et al. Cytotoxic activities of flavonoid glycoside acetates from Consolida oliveriana[J]. Planta Med, 2008, 74:171-174.
[25] Qiao S, Xu HS, Shi XW, et al. Identification of major bioactive components and their metabolites in rat plasma oral administration of Zhikebao tablet by UHPLC-QTOF-MS[J]. Acta Pharm Sin (药学学报), 2018, 53:1536-1544.
[26] Shao Y, Wang MF, Ho CT, et al. Wagner, lingulatusin, two epimers of an unusual linear diterpene form Aster lingulatus[J]. Phytochemistry, 1998, 49:609-612.
[27] Cheng DL, Cao XP, Wei HX, et al. Kaurane diterpenoids from Aster ageratoides[J]. Phytochemistry, 1993, 33:1181-1183.
[28] Li EW, Gao X, Gao K, et al. Labdane diterpenoid glycosides from Aster veitchianus[J]. Chem Biodiv, 2007, 4:531-538.
[29] Schöpke T, Al-Tawaha C, Wray V, et al. Triterpenoid saponins from Aster bellidiastrum[J]. Phytochemistry, 1997, 45:125-132.
[30] Yu P, Cheng S, Xiang J, et al. Expectorant, antitussive, anti-inflammatory activities and compositional analysis of Aster tataricus[J]. J Ethnopharmacol, 2015, 164:328-333.
[31] Sun YP, Li L, Liao M, et al. A systematic data acquisition and mining strategy for chemical profiling of Aster tataricus rhizome (Ziwan) by UHPLC-Q-TOF-MS and the corresponding anti-depressive activity screening[J]. J Pharm Biomed Anal, 2018, 154:216-226.
[32] Zhou WB, Zeng GZ, Xu HM, et al. Astershionones A-F, six new anti-HBV shionane-type triterpenes from Aster tataricus[J]. Fitoterapia, 2014, 93:98-104.
[33] Sung CK, Kim SM, Oh CJ, et al. Taraxerone enhances alcohol oxidation via increases of alcohol dehyderogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities and gene expressions[J]. Food Chem Toxicol, 2012, 21:485-489.
[34] Mo EK, Han BH, Kim SM, et al. Identification of d-friedoolean-13-en-3-one (Taraxerone) as an antioxidant compound from sedom (Sedum sarmentosum)[J]. Food Sci Biotechnol, 2012, 21:485-489.
[35] Akihisa T, Kimura Y, Koike K, et al. Astertarone A:a triterpenoid ketone isolated from the roots of Aster tataricus L.[J]. Chem Pharm Bull, 1998, 46:1824-1826.
[36] Zhang N, Pang L, Dong N, et al. Quantification of taraxasterol in rat plasma by LC/MS/MS:application to a pharmacokinetic study[J]. Biomed Chromatogr, 2015, 29:1643.
[37] Akihisa T, Kimura Y, Tai T, et al. Astertarone, a hydroxy-triterpenoid ketone from the roots of Aster tataricus L.[J]. Chem Pharm Bull, 1999, 47:1161-1163.
[38] Kemmo S, Ollilainen V, Lampi AM, et al. Determination of stigmasterol and cholesterol oxides using atmospheric pressure chemical ionization liquid chromatography/mass spectrometry[J]. Food Chem, 2007, 101:1438-1445.