药学学报, 2019, 54(10): 1711-1717
引用本文:
金晶, 季鸣, 陈晓光. 蛋白翻译后修饰与肿瘤免疫治疗[J]. 药学学报, 2019, 54(10): 1711-1717.
JIN Jing, JI Ming, CHEN Xiao-guang. Post-translational modifications of proteins and cancer immunotherapy[J]. Acta Pharmaceutica Sinica, 2019, 54(10): 1711-1717.

蛋白翻译后修饰与肿瘤免疫治疗
金晶, 季鸣, 陈晓光
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室/创新药物非临床药物代谢及PK/PD研究北京市重点实验室, 北京 100050
摘要:
蛋白翻译后修饰是一种蛋白功能调节的重要方式,对生理和病理条件下蛋白质的结构和功能都至关重要,且修饰种类繁多。肿瘤的免疫治疗是指通过激活体内的免疫细胞或使失能的免疫细胞正常化从而治疗肿瘤的有效方法。近年来研究发现,许多类型的蛋白翻译后修饰都参与了肿瘤微环境中免疫细胞的增殖、活化以及代谢重编程等过程,并可能影响肿瘤免疫治疗的疗效。因此,本文就几类不同蛋白翻译后修饰对肿瘤微环境中免疫细胞的作用进行综述,旨在为肿瘤免疫治疗提供新的思路。
关键词:    蛋白翻译后修饰      肿瘤      肿瘤微环境      肿瘤免疫治疗     
Post-translational modifications of proteins and cancer immunotherapy
JIN Jing, JI Ming, CHEN Xiao-guang
State Key Laboratory of Bioactive Substances and Functions of Natural Medicines/Beijing Key Laboratory of Non-clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Post-translational modifications (PTMs) of proteins is an important mode of protein function regulation, which is essential for the structure and function of proteins under physiological and pathological conditions, and the types of modifications is wide. Cancer immunotherapy refers to an effective method for cancer treatment by activating or normalizing disabled immune cells. In recent years, researchers have found that many types of PTM are involved in the process of proliferation, activation and metabolic reprogramming of immune cells in cancer microenvironment, and may affect the efficacy of cancer immunotherapy. Therefore, this article reviews the effects of several different PTMs on immune cells in cancer microenvironment, and aims to provide new ideas for cancer immunotherapy.
Key words:    post-translational modifications of proteins    cancer    cancer microenvironment    cancer immuno-therapy   
收稿日期: 2019-08-29
DOI: 10.16438/j.0513-4870.2019-0695
基金项目: “十三五”国家“重大新药创制”科技重大专项(2018ZX09711001-003).
通讯作者: 陈晓光,Tel:86-10-63165207,E-mail:chxg@imm.ac.cn
Email: chxg@imm.ac.cn
相关功能
PDF(537KB) Free
打印本文
0
作者相关文章
金晶  在本刊中的所有文章
季鸣  在本刊中的所有文章
陈晓光  在本刊中的所有文章

参考文献:
[1] Lesterhuis WJ, Haanen JB, Punt CJ. Cancer immunotherapy——revisited[J]. Nat Rev Drug Discov, 2011, 10:591-600.
[2] Chen DS, Mellman I. Oncology meets immunology:the cancerimmunity cycle[J]. Immunity, 2013, 39:1-10.
[3] Doyle HA, Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity[J]. Trends Immunol, 2001, 22:443-449.
[4] Seet BT, Dikic I, Zhou MM, et al. Reading protein modifications with interaction domains[J]. Nat Rev Mol Cell Biol, 2006, 7:473-483.
[5] Karve TM, Cheema AK. Small changes huge impact:the role of protein posttranslational modifications in cellular homeostasis and disease[J]. J Amino Acids, 2011, 2011:207691.
[6] Liu J, Qian C, Cao X. Post-translational modification control of innate immunity[J]. Immunity, 2016, 45:15-30.
[7] Rudd PM, Elliott T, Cresswell P, et al. Glycosylation and the immune system[J]. Science, 2001, 291:2370-2376.
[8] Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease[J]. Cell, 2006, 126:855-867.
[9] Pinho SS, Reis CA. Glycosylation in cancer:mechanisms and clinical implications[J]. Nat Rev Cancer, 2015, 15:540-555.
[10] Li Y, Xie M, Men L, et al. O-GlcNAcylation in immunity and inflammation:an intricate system[J]. Int J Mol Med, 2019, 44:363-374.
[11] Torres CR, Hart GW. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc[J]. J Biol Chem, 1984, 259:3308-3317.
[12] Chang CH, Qiu J, O'Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J]. Cell, 2015, 162:1229-1241.
[13] Swamy M, Pathak S, Grzes KM, et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy[J]. Nat Immunol, 2016, 17:712-720.
[14] Lavrsen K, Madsen CB, Rasch MG, et al. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity[J]. Glycoconj J, 2013, 30:227-236.
[15] Fardini Y, Dehennaut V, Lefebvre T, et al. O-GlcNAcylation:a new cancer hallmark?[J]. Front Endocrinol, 2013, 4:99.
[16] Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy[J]. Nat Rev Cancer, 2017, 18:69-88.
[17] Muratani M, Tansey WP. How the ubiquitin-proteasome system controls transcription[J]. Nat Rev Mol Cell Biol, 2003, 4:192-201.
[18] Rock KL, Gramm C, Rothstein L, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules[J]. Cell, 1994, 78:761-771.
[19] Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states[J]. J Am Soc Nephrol, 2006, 17:1807-1819.
[20] Li Y, Zhang D, Xu J, et al. Discovery and development of natural heat shock protein 90 inhibitors in cancer treatment[J]. Acta Pharm Sin B, 2012, 2:238-245.
[21] Sahtoe DD, Sixma TK. Layers of DUB regulation[J]. Trends Biochem Sci, 2015, 40:456-467.
[22] Zinngrebe J, Montinaro A, Peltzer N, et al. Ubiquitin in the immune system[J]. EMBO Rep, 2014, 15:28-45.
[23] Nurieva RI, Liu X, Dong C. Molecular mechanisms of T-cell tolerance[J]. Immunol Rev, 2011, 241:133-144.
[24] Loeser S, Penninger JM. The ubiquitin E3 ligase Cbl-b in T cells tolerance and tumor immunity[J]. Cell Cycle, 2007, 6:2478-2485.
[25] Bachmaier K, Krawczyk C, Kozieradzki I, et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b[J]. Nature, 2000, 403:211-216.
[26] Chiang YJ, Kole HK, Brown K, et al. Cbl-b regulates the CD28 dependence of T-cell activation[J]. Nature, 2000, 403:216-220.
[27] Naramura M, Jang IK, Kole H, et al. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR downmodulation[J]. Nat Immunol, 2002, 3:1192-1199.
[28] Paolino M, Choidas A, Wallner S, et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells[J]. Nature, 2014, 507:508-512.
[29] Fang D, Elly C, Gao B, et al. Dysregulation of T lymphocyte function in itchy mice:a role for Itch in TH2 differentiation[J]. Nat Immunol, 2002, 3:281-287.
[30] Anandasabapathy N, Ford GS, Bloom D, et al. GRAIL:an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells[J]. Immunity, 2003, 18:535-547.
[31] Nurieva RI, Zheng S, Jin W, et al. The E3 ubiquitin ligase GRAIL regulates T cell tolerance and regulatory T cell function by mediating T cell receptor-CD3 degradation[J]. Immunity, 2010, 32:670-680.
[32] Katlinski KV, Gui J, Katlinskaya YV, et al. Inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment[J]. Cancer Cell, 2017, 31:194-207.
[33] Kumar KGS, Tang W, Ravindranath AK, et al. SCFHOS ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-α receptor[J]. EMBO J, 2003, 22:5480-5490.
[34] Geng J, Yu S, Zhao H, et al. The transcriptional coactivator TAZ regulates reciprocal differentiation of TH17 cells and Treg cells[J]. Nat Immunol, 2017, 18:800-812.
[35] Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy[J]. Cancer Discov, 2018, 8:1069-1086.
[36] Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy[J]. Science, 2013, 342:1432-1433.
[37] Meng X, Liu X, Guo X, et al. FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells[J]. Nature, 2018, 564:130-135.
[38] Fujiwara M, Anstadt EJ, Clark RB. Cbl-b deficiency mediates resistance to programmed death-ligand 1/programmed death-1 regulation[J]. Front Immunol, 2017, 8:42
[39] Peer S, Baier G, Gruber T. Cblb-deficient T cells are less susceptible to PD-L1-mediated inhibition[J]. Oncotarget, 2017, 8:41841-41853.
[40] Bertrand MJM, Milutinovic S, Dickson KM, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination[J]. Mol Cell, 2008, 30:689-700.
[41] Honda R, Tanaka H, Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53[J]. FEBS Lett, 1997, 420:25-27.
[42] Wang YT, Chen J, Chang CW, et al. Ubiquitination of tumor suppressor PML regulates prometastatic and immunosuppressive tumor microenvironment[J]. J Clin Invest, 2017, 127:2982-2997.
[43] Hayden MS, Ghosh S. Shared principles in NF-κB signaling[J]. Cell, 2008, 132:344-362.
[44] Hu H, Brittain GC, Chang JH, et al. OTUD7B controls noncanonical NF-κB activation through deubiquitination of TRAF3[J]. Nature, 2013, 494:371-374.
[45] Schweighoffer E, Tybulewicz VLJ. Signalling for B cell survival[J]. Curr Opin Cell Biol, 2018, 51:8-14.
[46] Hu H, Wang H, Xiao Y, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination[J]. J Exp Med, 2016, 213:399-414.
[47] Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis[J]. Proc Natl Acad Sci U S A, 1964, 51:786-794.
[48] Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009, 325:834-840.
[49] Choudhary C, Weinert BT, Nishida Y, et al. The growing landscape of lysine acetylation links metabolism and cell signalling[J]. Nat Rev Mol Cell Biol, 2014, 15:536-550.
[50] Ogryzko VV, Schiltz RL, Russanova V, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases[J]. Cell, 1996, 87:953-959.
[51] Ford E, Voit R, Liszt G, et al. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription[J]. Genes Dev, 2006, 20:1075-1080.
[52] Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy[J]. Cold Spring Harb Perspect Med, 2016. DOI:10.1101/cshperspect.a026831.
[53] Khan AN, Magner WJ, Tomasi TB. An epigenetic vaccine model active in the prevention and treatment of melanoma[J]. J Transl Med, 2007, 5:64.
[54] Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation[J]. Nature, 2002, 418:191-195.
[55] Bonaldi T, Talamo F, Scaffidi P, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion[J]. EMBO J, 2003, 22:5551-5560.
[56] Finn OJ. Cancer immunology[J] N Engl J Med, 2008, 358:2704-2715.
[57] Gasser S, Orsulic S, Brown EJ, et al. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor[J]. Nature, 2005, 436:1186-1190.
[58] López-Soto A, Folgueras AR, Seto E, et al. HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumour cells:potential implications for the immunosurveillance of cancer[J]. Oncogene, 2009, 28:2370-2382.
[59] van Loosdregt J, Vercoulen Y, Guichelaar T, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization[J]. Blood, 2010, 115:965-974.
[60] Betts G, Twohig J, Van den Broek M, et al. The impact of regulatory T cells on carcinogen-induced sarcogenesis[J]. Br J Cancer, 2007, 96:1849-1854.
[61] Yang XJ, Seto E. Lysine acetylation:codified crosstalk with other posttranslational modifications[J]. Mol Cell, 2008, 31:449-461.
[62] Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Mol Cell, 2006, 23:607-618.
[63] Peng C, Lu Z, Xie Z, et al. The first identification of lysine malonylation substrates and its regulatory enzyme[J]. Mol Cell Proteomics, 2011, 10:M111.012658.
[64] Xie Z, Dai J, Dai L, et al. Lysine succinylation and lysine malonylation in histones[J]. Mol Cell Proteomics, 2012, 11:100-107.
[65] Colak G, Pougovkina O, Dai L, et al. Proteomic and biochemical studies of lysine malonylation suggest its malonic aciduria-associated regulatory role in mitochondrial function and fatty acid oxidation[J]. Mol Cell Proteomics, 2015, 14:3056-3071.
[66] Poh AR, Ernst M. Targeting macrophages in cancer:from bench to bedside[J]. Front Oncol, 2018, 8:49.
[67] Yang L, Zhang Y. Tumor-associated macrophages:from basic research to clinical application[J]. J Hematol Oncol, 2017, 10:58.
[68] Galván-Peña S, Carroll RG, Newman C, et al. Malonylation of GAPDH is an inflammatory signal in macrophages[J]. Nat Commun, 2019, 10:338.
[69] Zhang Z, Tan M, Xie Z, et al. Identification of lysine succinylation as a new post-translational modification[J]. Nat Chem Biol, 2011, 7:58-63.
[70] Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α[J]. Nature, 2013, 496:238-242.
[71] Mills E, O'Neill LA. Succinate:a metabolic signal in inflammation[J]. Trends Cell Biol, 2014, 24:313-320.
[72] Aspuria PP, Lunt SY, Varemo L, et al. Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism[J]. Cancer Metab, 2014, 2:21.
[73] Jiang S, Yan W. Succinate in the cancer-immune cycle[J]. Cancer Lett, 2017, 390:45-47.
[74] Bardella C, Pollard PJ, Tomlinson I. SDH mutations in cancer[J]. Biochim Biophys Acta, 2011, 1807:1432-1443.
[75] Guzy RD, Sharma B, Bell E, et al. Loss of the SdhB, but not the SdhA, subunit of complex Ⅱ triggers reactive oxygen speciesdependent hypoxia-inducible factor activation and tumorigenesis[J]. Mol Cell Biol, 2008, 28:718-731.
[76] Wang C, Zhang C, Li X, et al. CPT1A-mediated succinylation of S100A10 increases human gastric cancer invasion[J]. J Cell Mol Med, 2019, 23:293-305.
[77] Liu C, Liu Y, Chen L, et al. Quantitative proteome and lysine succinylome analyses provide insights into metabolic regulation in breast cancer[J]. Breast Cancer, 2019, 26:93-105.
[78] Wang Y, Guo YR, Xing D, et al. Supramolecular assembly of KAT2A with succinyl-CoA for histone succinylation[J]. Cell Discov, 2018, 4:47.
[79] Wang Y, Jin J, Chung MWH, et al. Identification of the YEATS domain of GAS41 as a pH-dependent reader of histone succinylation[J]. Proc Natl Acad Sci U S A, 2018, 115:2365-2370.
相关文献:
1.张如月, 周玉冰, 杨哲, 郭金秀, 李朵璐.外泌体介导的肿瘤化疗耐药研究进展[J]. 药学学报, 2019,54(4): 594-600
2.刘金宜, 任利文, 李莎, 唐琴, 李婉, 郑湘锦, 王金华, 杜冠华.肿瘤免疫和代谢药物靶点研究进展[J]. 药学学报, 2019,54(10): 1718-1727
3.徐骏, 耿美玉, 黄敏.化疗药调控肿瘤免疫应答机制研究进展[J]. 药学学报, 2019,54(10): 1741-1748
4.王晓敏, 黄敏.代谢产物调控肿瘤信号通路的分子机制研究进展[J]. 药学学报, 2019,54(10): 1755-1770
5.吕英琪, 陈曜星, 卫晨萱, 江淦, 高小玲.胶质母细胞瘤的免疫治疗研究进展[J]. 药学学报, 2019,54(10): 1792-1801
6.候博, 王当歌, 高晶, 王晖, 李亚平, 于海军.微环境激活型纳米递药系统用于肿瘤免疫治疗的研究进展[J]. 药学学报, 2019,54(10): 1802-1809
7.赵星, 顾杨卓, 宋相容.mRNA致敏的树突状细胞用于肿瘤免疫治疗的研究进展[J]. 药学学报, 2019,54(10): 1818-1823
8.陈风飞, 李欣欣, 孙立, 马晓慧, 袁胜涛.肿瘤微环境及相关靶向药的研究进展[J]. 药学学报, 2018,53(5): 676-683
9.周丹丹, 余娇娇, 花芳, 胡卓伟.巨噬细胞迁移抑制因子,连接炎症和肿瘤的关键蛋白[J]. 药学学报, 2018,53(11): 1761-1769
10.张心苑, 崔国楠, 徐柏玲.吲哚胺2,3-双加氧酶IDO1抑制剂的研究进展[J]. 药学学报, 2018,53(11): 1784-1796
11.杨艳芳, 孟盈盈, 叶军, 夏学军, 李琳, 董武军, 王洪亮, 刘玉玲.模拟体内肿瘤微环境的乳腺癌细胞与脐静脉内皮细胞的体外共培养[J]. 药学学报, 2018,53(3): 403-409
12.韩雨衡, 来兴欢, 乐子薇, 华子春.肿瘤靶向性沙门氏菌VNP20009抗肿瘤作用及其对肿瘤免疫微环境的影响[J]. 药学学报, 2016,51(9): 1417-1422
13.高会乐, 蒋新国.肿瘤靶向递药新策略的研究进展[J]. 药学学报, 2016,51(2): 272-280