药学学报, 2019, 54(11): 1903-1908
引用本文:
崔晓丽, 沈泽, 宋春垚, 蒋济南, 周佳旭, 刘志荣, 王艳春. 苦参总黄酮通过抗增殖蛋白抑制高糖诱导的心肌成纤维细胞增殖[J]. 药学学报, 2019, 54(11): 1903-1908.
CUI Xiao-li, SHEN Ze, SONG Chun-yao, JIANG Ji-nan, ZHOU Jia-xu, LIU Zhi-rong, WANG Yan-chun. Sophoral flavones inhibit proliferation of cardiac fibroblasts via regulating the expression of prohibitin[J]. Acta Pharmaceutica Sinica, 2019, 54(11): 1903-1908.

苦参总黄酮通过抗增殖蛋白抑制高糖诱导的心肌成纤维细胞增殖
崔晓丽1, 沈泽2, 宋春垚2, 蒋济南3, 周佳旭3, 刘志荣3, 王艳春1
1. 吉林医药学院 基础医学院, 吉林 吉林 132013;
2. 吉林医药学院 临床医学院, 吉林 吉林 132013;
3. 吉林医药学院 药学院, 吉林 吉林 132013
摘要:
探讨苦参总黄酮(sophoral flavones,SF)改善高糖诱导心肌成纤维细胞(cardiac fibroblasts,CFb)增殖的作用及其相关机制。以25 mmol·L-1 D-葡萄糖培养CFb 48 h构建细胞增殖模型,作为模型组;SF(12.5、25和50 mg·L-1)作为干预组。采用MTT法检测细胞活力;ELISA检测转化生长因子-β1(transforming growth factor-β1,TGF-β1)、基质金属蛋白酶-2(matrix metalloproteinase-2,MMP-2)、Ⅰ型胶原蛋白(collagen Ⅰ)和Ⅲ型胶原蛋白(collagen Ⅲ)含量;流式细胞术检测细胞周期变化;Western blot法和免疫荧光法检测抗增殖蛋白(prohibitin,PHB)的表达和定位。动物处置方案经吉林医药学院伦理审查委员会批准。结果表明,25 mmol·L-1葡萄糖可促进CFb增殖;模型组的TGF-β1、MMP-2、collagen Ⅰ和collagen Ⅲ含量高于对照组(P<0.05);高糖条件下处于S期和G2期的细胞数量增加。与对照组相比,模型组的PHB在6 h出现核转位,在48 h蛋白表达下降(P<0.01);与模型组比较,12.5~50 mg·L-1苦参总黄酮可降低TGF-β1、MMP-2、collagen Ⅰ和collagen Ⅲ的含量,增加了G1期细胞数量,在48 h增加了PHB的蛋白表达(P<0.05),但未观察到SF对PHB核转位的影响。以上结果表明,SF可以改善高糖诱导的CFb增殖,其作用与促进PHB表达相关。
关键词:    糖尿病性心肌病      苦参总黄酮      高糖      心肌成纤维细胞      增殖      抗增殖蛋白     
Sophoral flavones inhibit proliferation of cardiac fibroblasts via regulating the expression of prohibitin
CUI Xiao-li1, SHEN Ze2, SONG Chun-yao2, JIANG Ji-nan3, ZHOU Jia-xu3, LIU Zhi-rong3, WANG Yan-chun1
1. Basic Medicine of Jilin Medical University, Jilin 132013, China;
2. The Clinical Medicine of Jilin Medical University, Jilin 132013, China;
3. The Pharmacy College of Jilin Medical University, Jilin 132013, China
Abstract:
The aim of the present study was to investigate the effect of Sophoral flavones on proliferation of cardiac fibroblasts (CFb) induced by high glucose and its underlying mechanism. Cardiac fibroblasts were exposed to different concentration of D-glucose (15, 25 and 35 mmol·L-1) at different time point (24, 48 and 72 h) in order to determine cell proliferation, and the model group was established by culturing CFb with 25 mmol·L-1 D-glucose for 48 h. Sophoral flavones (12.5, 25 and 50 mg·L-1) were employed for intervention. The cell viability was measured by MTT assay, and the levels of transforming growth factor-β1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), collagen Ⅰ and collagen Ⅲ were measured by ELISA. In addition, flow cytometry was employed to detect the cell cycle; while the protein expression of prohibitin (PHB) was observed via immunocytochemistry and Western blot. This animal experiment had been approved by Jilin Medical University Experiment Animal Ethics Review Committee. The results showed that 25 mmol·L-1 glucose could promote the proliferation of CFb; and the contents of TGF-β1, MMP-2, collagen Ⅰ and collagen Ⅲ in the model group were higher than that of control (P<0.05). The number of cells in S and G2 phase increased under high glucose condition. In the model group, PHB translocation occurred at 6 h and protein expression decreased at 48 h (P<0.01). Compared with the model group, 12.5-50 mg·L-1 Sophoral flavones reduced the contents of TGF-β1, MMP-2, collagen Ⅰ and collagen Ⅲ, increased the number of G1 phase cells, and increased the expression of PHB protein at 48 h (P<0.05), with no effect on the nuclear translocation of PHB. These results indicated that Sophoral flavones could prevent the proliferation of CFb induced by high glucose, the mechanism of which may be related to increasing the expression of PHB protein.
Key words:    diabetic cardiomopathy    Sophoral flavones    high glucose    myocardial fibrosis    proliferation    prohibitin   
收稿日期: 2019-04-17
DOI: 10.16438/j.0513-4870.2019-0286
基金项目: 吉林省卫生厅资助项目(2012Z060);国家级大学生创新创业训练计划资助项目(201613706021).
相关功能
PDF(642KB) Free
打印本文
0
作者相关文章
崔晓丽  在本刊中的所有文章
沈泽  在本刊中的所有文章
宋春垚  在本刊中的所有文章
蒋济南  在本刊中的所有文章
周佳旭  在本刊中的所有文章
刘志荣  在本刊中的所有文章
王艳春  在本刊中的所有文章

参考文献:
[1] Yi X, Li XY, Zhou YL, et al. Hepatocyte growth factor regulates the TGF-β1-induced proliferation, differentiation and secretory function of cardiac fibroblasts[J]. Int J Mol Med, 2014, 34: 381-390.
[2] Travers JG, Kamal FA, Robbins J, et al. Cardiac fibrosis: the fibroblast awakens[J]. Circ Res, 2016, 118: 1021-1040.
[3] Zhou YM, Li MJ, Zhou YL, et al. Growth differentiation factor-15(GDF-15), novel biomarker for assessing atrial fibrosis in patients with atrial fibrillation and rheumatic heart disease[J]. Int J Clin Exp Med, 2015, 8: 21201-21207.
[4] Chong ES, Hwang GB, Nho CW, et al. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles[J]. Sci Total Environ, 2013, 444: 110-114.
[5] Zhang L, Ravipati AS, Koyyalamudi SR, et al. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds[J]. Agric Food Chem, 2011, 59: 12361-12367.
[6] Jung HA, Jeong DM, Chung HY, et al. Re-evaluation of the antioxidant prenylated flavonoids from the roots of Sophora flavescens[J]. Biol Pharm Bull, 2008, 31: 908-915.
[7] Jin JH, Kim JS, Kang SS, et al. Anti-inflammatory and anti-arthritic activity of total flavonoids of the roots of Sophora flavescens[J]. J Ethnopharmacol, 2010, 127: 589-595.
[8] Chang Y, Lu Q, Wang Y, et al. Improvement effect of Sophora flavones combined with captopril on diabetic cardiomyopathy of rats[J]. J Jilin Univ (Med Ed) (吉林大学学报(医学版)), 2016, 42: 721-724.
[9] Biernacka A, Dobaczewski M, Frangogiannis NG, et al. TGF-β signaling in fibrosis[J]. Growth Factors, 2011, 29: 196-202.
[10] Yang H, Feng AY, Lin SD, et al. Fibroblast growth factor-21 prevents diabetic cardiomyopathy via AMPK-mediated antioxidation and lipid-lowering effects in the heart[J]. Cell Death Dis, 2018, 9: 227.
[11] Niu WX, Chen MH, Zhang N, et al. Pepstatin Pr show anti-fibrosis effect related to YAP-TGFβ-Smad pathway[J]. Acta Pharm Sin (药学学报), 2019, 54: 89-94.
[12] Nuell MJ, Stewart DA, Walker L, et al. Prohibitin, an evolutionarily conserved intracellular protein that blocks DNA synthesis in normal fibroblasts and HeLa cells[J]. Mol Cell Biol, 1991, 11: 1372-1381.
[13] Owczarczyk-Saczonek A, Drozdowski M, Maciejewska-Radomska A, et al. The effect of subcutaneous methotrexate on markers of metabolic syndrome in psoriatic patients-preliminary report[J]. Postepy Dermatol Alergol, 2018, 35: 53-59.
[14] Dong WQ, Chao M, Lu QH, et al. Prohibitin overexpression improves myocardial function in diabetic cardiomyopathy[J]. Oncotarget, 2016, 7: 66-80.
[15] Anderson CJ, Kahl A, Qian LP, et al. Prohibitin is a positive modulator of mitochondrial function in PC12 cells under oxidative stress[J]. J Neurochem, 2018, 146: 235-250.
[16] Yang J, Li B, He QY. Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment[J]. Cell Death Dis, 2018, 9: 580.
[17] Djehal A, Krayem M, Najem A, et al. Targeting prohibitin with small molecules to promote melanogenesis and apoptosis in melanoma cells[J]. Eur J Med Chem, 2018, 155: 880-888.
[18] Yuan C, Chen WX, Zhu JS, et al. IL-10 treatment is associated with prohibitin expression in the Crohn's disease intestinal fibrosis mouse model[J]. Mediat Inflamm, 2013, 2013: 617145.
[19] Zhang F, Fan D, Mo XN. Prohibitin and the extracellular matrix are upregulated in murine alveolar epithelial cells with LPS-induced acute injury[J]. Mol Med Rep, 2018, 17: 7769-7773.