药学学报, 2019, 54(11): 1926-1939
引用本文:
李坤, 徐元波, 张伟, 马培志. PIM激酶及其小分子抑制剂的研究进展[J]. 药学学报, 2019, 54(11): 1926-1939.
LI Kun, XU Yuan-bo, ZHANG Wei, MA Pei-zhi. Recent advances of PIM kinase and its small-molecule inhibitors[J]. Acta Pharmaceutica Sinica, 2019, 54(11): 1926-1939.

PIM激酶及其小分子抑制剂的研究进展
李坤1, 徐元波2, 张伟1, 马培志1
1. 河南省人民医院药学部, 郑州大学人民医院, 河南大学临床医学院, 河南 郑州 450003;
2. 沈阳药科大学, 基于靶点的药物设计与研究教育部重点实验室, 辽宁 沈阳 110016
摘要:
莫洛尼小鼠白血病病毒前病毒整合激酶(PIM)是一种结构独特的丝氨酸/苏氨酸激酶,在多种恶性血液病以及一些实体瘤中高度表达,且其表达量与癌症恶性程度和患者不良预后有关。PIM激酶通过对其底物蛋白进行磷酸化调节细胞的增殖和分化,是潜在的癌症治疗药物的作用靶标。国内外的研究机构通过文献报道了大量高活性的PIM激酶抑制剂,本文按照研究机构分类对其研究进展进行综述。
关键词:    PIM激酶      激酶抑制剂      抗肿瘤      构效关系     
Recent advances of PIM kinase and its small-molecule inhibitors
LI Kun1, XU Yuan-bo2, ZHANG Wei1, MA Pei-zhi1
1. Department of Pharmacy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou 450003, China;
2. Key Laboratory of Structure-Based Drugs Design and Discovery(Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, China
Abstract:
Provirus Integration in Maloney murine leukemia virus (PIM) represents a novel class of unique Ser/Thr kinase, which has been identified to be over-expressed in multiple hematological malignancies and some solid tumors, and the expression quantity correlates with malignant grade and poor prognosis in patients with cancer. PIM kinase plays important roles in regulation of cell proliferation and differentiation through the phosphorylation of its protein substrates, and it has become the emerging target for cancer treatment. A large number of highly active PIM kinase inhibitors have been reported by domestic and foreign research institutions, and the research progress will be summarized according to affiliations in this review.
Key words:    PIM kinase    kinase inhibitor    anticancer    structure-activity relationship   
收稿日期: 2019-06-12
DOI: 10.16438/j.0513-4870.2019-0466
基金项目: 国家自然科学基金资助项目(81803357);河南省重点研发与推广专项(科技攻关182102310273).
相关功能
PDF(843KB) Free
打印本文
0
作者相关文章
李坤  在本刊中的所有文章
徐元波  在本刊中的所有文章
张伟  在本刊中的所有文章
马培志  在本刊中的所有文章

参考文献:
[1] Gu JJ, Wang Z, Reeves R, et al. PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis[J]. Oncogene, 2009, 28: 4261-4271.
[2] Qian KC, Wang L, Hickey ER, et al. Structural basis of constitutive activity and a unique nucleotide binding mode of human PIM-1 kinase[J]. J Biol Chem, 2005, 280: 6130-6137.
[3] Le BT, Kumarasiri M, Adams JR, et al. Targeting PIM kinases for cancer treatment: opportunities and challenges[J]. Future Med Chem, 2015, 7: 35-53.
[4] Bachmann M, Moroy T. The serine/threonine kinase PIM-1[J]. Int J Biochem Cell B, 2005, 37: 726-730.
[5] Nawijn MC, Alendar A, Berns A. For better or for worse: the role of PIM oncogenes in tumorigenesis[J]. Nat Rev Cancer, 2011, 11: 23-34.
[6] Qi XM, Wang F, Mortensen M, et al. Targeting an oncogenic kinase/phosphatase signaling network for cancer therapy[J]. Acta Pharm Sin B, 2018, 8: 511-517.
[7] Chen LS, Balakrishnan K, Gandhi V. Inflammation and survival pathways: chronic lymphocytic leukemia as a model system[J]. Biochem Pharmacol, 2010, 80: 1936-1945.
[8] Zhang Y, Wang Z, Li X, et al. PIM kinase-dependent inhibition of c-Myc degradation[J]. Oncogene, 2008, 27: 4809-4819.
[9] Zippo A, De Robertis A, Serafini R, et al. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation[J]. Nat Cell Biol, 2007, 9: 932-944.
[10] Zha J, Harada H, Yang E, et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL[J]. Cell, 1996, 87: 619-628.
[11] Aho TL, Sandholm J, Peltola KJ, et al. PIM-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site[J]. FEBS Lett, 2004, 571: 43-49.
[12] Zhang Y, Wang Z, Magnuson NS. PIM-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells[J]. Mol Cancer Res, 2007, 5: 909-922.
[13] Morishita D, Katayama R, Sekimizu K, et al. PIM kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels[J]. Cancer Res, 2008, 68: 5076-5085.
[14] Li S, Sonenberg N, Gingras AC, et al. Translational control of cell fate: availability of phosphorylation sites on translational repressor 4E-BP1 governs its proapoptotic potency[J]. Mol Cell Biol, 2002, 22: 2853-2861.
[15] Natarajan K, Bhullar J, Shukla S, et al. The PIM kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by PIM-1-dependent and -independent mechanisms[J]. Biochem Pharmacol, 2013, 85: 514-524.
[16] Xie Y, Xu K, Linn DE, et al. The 44-kDa PIM-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells[J]. J Biol Chem, 2008, 283: 3349-3356.
[17] Laird PW, Clarke A, Domen J, et al. In vivo analysis of PIM-1 deficiency[J]. Nucleic Acids Res, 1993, 21: 4750-4755.
[18] Drygin D, Haddach M, Pierre F, et al. Potential use of selective and nonselective PIM kinase inhibitors for cancer therapy[J]. J Med Chem, 2012, 55: 8199-8208.
[19] Arunesh GM, Shanthi E, Krishna MH, et al. Small molecule inhibitors of PIM1 kinase: July 2009 to February 2013 patent update[J]. Expert Opin Ther Pat, 2014, 24: 5-17.
[20] Zheng XZ, Jin XL, Zhao LX. Advances in studies of small molecule PIM kinase inhibitors[J]. Chin J Med Chem, 2013, 23: 499-505.
[21] Wang X, Magnuson S, Pastor R, et al. Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-PIM inhibitors by structure- and property-based drug design[J]. Bioorg Med Chem Lett, 2013, 23: 3149-3153.
[22] Hu H, Wang X, Chan GK, et al. Discovery of 3,5-substituted 6-azaindazoles as potent pan-PIM inhibitors[J]. Bioorg Med Chem Lett, 2015, 25: 5258-5264.
[23] Wang X, Kolesnikov A, Tay S, et al. Discovery of 5-azaindazole (GNE-955) as a potent pan-PIM inhibitor with optimized bioavailability[J]. J Med Chem, 2017, 60: 4458-4473.
[24] Wang X, Blackaby W, Allen V, et al. Optimization of pan-PIM kinase activity and oral bioavailability leading to diaminopyrazole (GDC-0339) for the treatment of multiple myeloma[J]. J Med Chem, 2019, 62: 2140-2153.
[25] Wu B, Wang HL, Cee VJ, et al. Discovery of 5-(1H-indol-5-yl)-1,3,4-thiadiazol-2-amines as potent PIM inhibitors[J]. Bioorg Med Chem Lett, 2015, 25: 775-880.
[26] Wurz RP, Pettus LH, Jackson C, et al. The discovery and optimization of aminooxadiazoles as potent PIM kinase inhibitors[J]. Bioorg Med Chem Lett, 2015, 25: 847-855.
[27] Wang HL, Cee VJ, Chavez F Jr, et al. The discovery of novel 3-(pyrazin-2-yl)-1H-indazoles as potent pan-PIM kinase inhibitors[J]. Bioorg Med Chem Lett, 2015, 25: 834-840.
[28] Wurz RP, Sastri C, D'Amico DC, et al. Discovery of imidazopyridazines as potent PIM-1/2 kinase inhibitors[J]. Bioorg Med Chem Lett, 2016, 26: 5580-5590.
[29] Cee VJ, Chavez F Jr, Herberich B, et al. Discovery and optimization of macrocyclic quinoxaline-pyrrolo-dihydropiperidinones as potent PIM-1/2 kinase inhibitors[J]. ACS Med Chem Lett, 2016, 7: 408-412.
[30] Pettus LH, Andrews KL, Booker SK, et al. Discovery and optimization of quinazolinone-pyrrolopyrrolones as potent and orally bioavailable pan-PIM kinase inhibitors[J]. J Med Chem, 2016, 59: 6407-6430.
[31] Wang HL, Andrews KL, Booker SK, et al. Discovery of (R)-8-(6-methyl-4-oxo-1,4,5,6-tetrahydropyrrolo[3,4-b]pyrrol-2-yl)-3-(1-methylcyclopropyl)-2-((1-methylcyclopropyl)amino)quinazolin-4(3H)-one, a potent and selective PIM-1/2 kinase inhibitor for hematological malignancies[J]. J Med Chem, 2019, 62: 1523-1540.
[32] Nishiguchi GA, Atallah G, Bellamacina C, et al. Discovery of novel 3,5-disubstituted indole derivatives as potent inhibitors of PIM-1, PIM-2, and PIM-3 protein kinases[J]. Bioorg Med Chem Lett, 2011, 21: 6366-6369.
[33] Burger MT, Han W, Lan J, et al. Structure guided optimization, in vitro activity, and in vivo activity of pan-PIM kinase inhibitors[J]. ACS Med Chem Lett, 2013, 4: 1193-1197.
[34] Burger MT, Nishiguchi G, Han W, et al. Identification of N-(4-((1R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a potent and selective proviral insertion site of moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitor in clinical trials for hematological malignancies[J]. J Med Chem, 2015, 58: 8373-8386.
[35] Nishiguchi GA, Burger MT, Han W, et al. Design, synthesis and structure activity relationship of potent pan-PIM kinase inhibitors derived from the pyridyl carboxamide scaffold[J]. Bioorg Med Chem Lett, 2016, 26: 2328-2332.
[36] Xiang Y, Hirth B, Asmussen G, et al. The discovery of novel benzofuran-2-carboxylic acids as potent PIM-1 inhibitors[J]. Bioorg Med Chem Lett, 2011, 21: 3050-3056.
[37] Barberis C, Moorcroft N, Arendt C, et al. Discovery of N-substituted 7-azaindoles as PIM1 kinase inhibitors-Part I[J]. Bioorg Med Chem Lett, 2017, 27: 4730-4734.
[38] Barberis C, Moorcroft N, Pribish J, et al. Discovery of N-substituted 7-azaindoles as Pan-PIM kinase inhibitors-Lead series identification-Part II[J]. Bioorg Med Chem Lett, 2017, 27: 4735-4740.
[39] Barberis C, Pribish J, Tserlin E, et al. Discovery of N-substituted 7-azaindoles as Pan-PIM kinases inhibitors-Lead optimization-Part III[J]. Bioorg Med Chem Lett, 2019, 29: 491-495.
[40] Xu Y, Brenning BG, Kultgen SG, et al. Synthesis and biological evaluation of pyrazolo[1,5-a]pyrimidine compounds as potent and selective PIM-1 inhibitors[J]. ACS Med Chem Lett, 2015, 6: 63-67.
[41] Pierre F, Stefan E, Nedellec AS, et al. 7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6]naphthyridines: a novel class of PIM kinase inhibitors with potent cell antiproliferative activity[J]. Bioorg Med Chem Lett, 2011, 21: 6687-6692.
[42] Pierre F, Regan CF, Chevrel MC, et al. Novel potent dual inhibitors of CK2 and PIM kinases with antiproliferative activity against cancer cells[J]. Bioorg Med Chem Lett, 2012, 22: 3327-3331.
[43] Haddach M, Michaux J, Schwaebe MK, et al. Discovery of CX-6258. A potent, selective, and orally efficacious pan-PIM kinases inhibitor[J]. ACS Med Chem Lett, 2012, 3: 135-139.
[44] Tsuhako AL, Brown DS, Koltun ES, et al. The design, synthesis, and biological evaluation of PIM kinase inhibitors[J]. Bioorg Med Chem Lett, 2012, 22: 3732-3738.
[45] Pierce AC, Jacobs M, Stuver-Moody C. Docking study yields four novel inhibitors of the protooncogen PIM-1 kinase[J]. J Med Chem, 2008, 51: 1972-1975.
[46] Grey R, Pierce AC, Bemis GW, et al. Structure-based design of 3-aryl-6-amino-triazolo[4,3-b]pyridazine inhibitors of PIM-1 kinase[J]. Bioorg Med Chem Lett, 2009, 19: 3019-3022.
[47] Cheney IW, Yan S, Appleby T, et al. Identification and structure-activity relationships of substituted pyridones as inhibitors of PIM-1 kinase[J]. Bioorg Med Chem Lett, 2007, 17: 1679-1683.
[48] Dwyer MP, Keertikar K, Paruch K, et al. Discovery of pyrazolo[1,5-a]pyrimidine-based PIM inhibitors: a template-based approach[J]. Bioorg Med Chem Lett, 2013, 23: 6178-6182.
[49] Tong Y, Stewart KD, Thomas S, et al. Isoxazolo[3,4-b]quinoline-3,4(1H,9H)-diones as unique, potent and selective inhibitors for PIM-1 and PIM-2 kinases: chemistry, biological activities, and molecular modeling[J]. Bioorg Med Chem Lett, 2008, 18: 5206-5208.
[50] Tao ZF, Hasvold LA, Leverson JD, et al. Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as potent, highly selective, and orally bioavailable inhibitors of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM) kinases[J]. J Med Chem, 2009, 52: 6621-6636.
[51] Qian K, Wang L, Cywin CL, et al. Hit to lead account of the discovery of a new class of inhibitors of PIM kinases and crystallographic studies revealing an unusual kinase binding mode[J]. J Med Chem, 2009, 52: 1814-1827.
[52] Dakin LA, Block MH, Chen H, et al. Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases[J]. Bioorg Med Chem Lett, 2012, 22: 4599-4604.
[53] Gingipalli L, Block MH, Bao L, et al. Discovery of 2,6-disubstituted pyrazine derivatives as inhibitors of CK2 and PIM kinases[J]. Bioorg Med Chem Lett, 2018, 28: 1336-1341.
[54] Nakano H, Saito N, Parker L, et al. Rational evolution of a novel type of potent and selective proviral integration site in Moloney murine leukemia virus kinase 1(PIM1) inhibitor from a screening-hit compound[J]. J Med Chem, 2012, 55: 5151-5164.
[55] Nakano H, Hasegawa T, Kojima H, et al. Design and synthesis of potent and selective PIM kinase inhibitors by targeting unique structure of ATP-binding pocket[J]. ACS Med Chem Lett, 2017, 8: 504-509.
[56] Bataille CJ, Brennan MB, Byrne S, et al. Thiazolidine derivatives as potent and selective inhibitors of the PIM kinase family[J]. Biorg Med Chem, 2017, 25: 2657-2665.
[57] Lee J, Park J, Hong VS. Synthesis and evaluation of 5-(3-(pyrazin-2-yl)benzylidene)thiazolidine-2,4-dione derivatives as pan-PIM kinases inhibitors[J]. Chem Pharm Bull, 2014, 62: 906-914.
[58] More KN, Jang HW, Hong VS, et al. PIM kinase inhibitory and antiproliferative activity of a novel series of meridianin C derivatives[J]. Bioorg Med Chem Lett, 2014, 24: 2424-2428.
[59] More KN, Hong VS, Lee A, et al. Discovery and evaluation of 3,5-disubstituted indole derivatives as PIM kinase inhibitors[J]. Bioorg Med Chem Lett, 2018, 28: 2513-2517.
[60] Oyallon B, Brachet-Botineau M, Loge C, et al. Structure-based design of novel quinoxaline-2-carboxylic acids and analogues as PIM-1 inhibitors[J]. Eur J Med Chem, 2018, 154: 101-109.
[61] Swellmeen L, Shahin R, Al-Hiari Y, et al. Structure based drug design of PIM-1 kinase followed by pharmacophore guided synthesis of quinolone-based inhibitors[J]. Bioorg Med Chem, 2017, 25: 4855-4875.
[62] Sawaguchi Y, Yamazaki R, Nishiyama Y, et al. Rational Design of a potent pan-PIM kinases inhibitor with a rhodanine-benzoimidazole structure[J]. Anticancer Res, 2017, 37: 4051-4057.
[63] Pastor J, Oyarzabal J, Saluste G, et al. Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors[J]. Bioorg Med Chem Lett, 2012, 22: 1591-1597.
[64] Olla S, Manetti F, Crespan E, et al. Indolyl-pyrrolone as a new scaffold for PIM1 inhibitors[J]. Bioorg Med Chem Lett, 2009, 19: 1512-1516.
[65] Mohareb RM, Samir EM, Halim PA. Synthesis, and anti-proliferative, PIM-1 kinase inhibitors and molecular docking of thiophenes derived from estrone[J]. Bioorg Chem, 2019, 83: 402-413.
[66] Suchaud V, Gavara L, Saugues E, et al. Identification of 1,6-dihydropyrazolo[4,3-c]carbazoles and 3,6-dihydropyrazolo[3,4-c]carbazoles as new PIM kinase inhibitors[J]. Bioorg Med Chem, 2013, 21: 4102-4111.
[67] Suchaud V, Gavara L, Giraud F, et al. Synthesis of pyrazolo[4,3-a]phenanthridines, a new scaffold for PIM kinase inhibition[J]. Bioorg Med Chem, 2014, 22: 4704-4710.
[68] Letribot B, Akue-Gedu R, Santio NM, et al. Use of copper (I) catalyzed azide alkyne cycloaddition (CuAAC) for the preparation of conjugated pyrrolo[2,3-a]carbazole PIM kinase inhibitors[J]. Eur J Med Chem, 2012, 50: 304-310.
[69] Giraud F, Akue-Gedu R, Nauton L, et al. Synthesis and biological activities of 4-substituted pyrrolo[2,3-a]carbazole PIM kinase inhibitors[J]. Eur J Med Chem, 2012, 56: 225-236.
[70] Akue-Gedu R, Nauton L, Thery V, et al. Synthesis, PIM kinase inhibitory potencies and in vitro antiproliferative activities of diversely substituted pyrrolo[2,3-a]carbazoles[J]. Bioorg Med Chem, 2010, 18: 6865-6873.
[71] Akue-Gedu R, Rossignol E, Azzaro S, et al. Synthesis, kinase inhibitory potencies, and in vitro antiproliferative evaluation of new PIM kinase inhibitors[J]. J Med Chem, 2009, 52: 6369-6381.
[72] Casuscelli F, Ardini E, Avanzi N, et al. Discovery and optimization of pyrrolo[1,2-a]pyrazinones leads to novel and selective inhibitors of PIM kinases[J]. Bioorg Med Chem, 2013, 21: 7364-7380.
[73] Xia Z, Knaak C, Ma J, et al. Synthesis and evaluation of novel inhibitors of PIM-1 and PIM-2 protein kinases[J]. J Med Chem, 2009, 52: 74-86.
[74] Fan YB, Li K, Huang M, et al. Design and synthesis of substituted pyrido[3,2-d]-1,2,3-triazines as potential PIM-1 inhibitors[J]. Bioorg Med Chem Lett, 2016, 26: 1224-1228.
[75] Li K, Li Y, Zhou D, et al. Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and PIM-1 kinase inhibitors[J]. Biorg Med Chem, 2016, 24: 1889-1897.
[76] Asati V, Mahapatra DK, Bharti SK, et al. PIM kinase inhibitors: structural and pharmacological perspectives[J]. Eur J Med Chem, 2019, 172: 95-108.
相关文献:
1.林菁菁, 杨亚军, 沈珑瑛, 潘显道.抗肿瘤药玫瑰树碱及其衍生物的合成和药理研究进展[J]. 药学学报, 2017,52(9): 1387-1396
2.王艳艳, 张晓进, 杨英睿, 孙昊鹏, 尤启冬.类天然藤黄属桥环呫吨酮的结构优化研究进展[J]. 药学学报, 2014,49(3): 293-302
3.闻家辰, 姜涛, 包宇, 林贤俊, 王宛荞, 刘丹, 赵临襄.取代乙酸己(庚)硫酯类化合物的合成与体外抗肿瘤活性[J]. 药学学报, 2014,49(3): 352-358
4.尹桂林, 李燕, 唐克, 金小锋, 陈晓光, 李莉, 冯志强.2-(3-丁炔酰胺基苯基) 苯并噻唑衍生物的合成及抗肿瘤活性研究[J]. 药学学报, 2014,49(6): 888-895
5.朱齐凤, 龚永祥, 钟金清, 刘礼飞, 李旭飞, 赵旭阳.新型4-取代-3-硝基苯甲酰胺类似物的设计、合成及活性研究[J]. 药学学报, 2014,49(8): 1143-1149
6.王克, 李燕, 张莉婧, 杨瀚泽, 陈晓光, 冯志强.索拉非尼类似物的合成和体外抗肿瘤活性研究[J]. 药学学报, 2014,49(5): 639-643
7.马 芹, 郭 亮, 孙 洁, 范文玺.1-(4-氯苯基)-β-咔啉衍生物的合成和抗肿瘤活性初步研究[J]. 药学学报, 2013,48(1): 77-82
8.刘文虎, 常晋霞, 刘 毅.5-取代-2-(吡啶基) 苯并噻唑类化合物的合成及抗肿瘤活性[J]. 药学学报, 2013,48(1): 83-88
9.董丹丹, 肖燕燕, 刘 伟, 周红刚, 杨 诚.Aurora-B激酶及其抑制剂研究进展[J]. 药学学报, 2013,48(4): 457-465
10.刘文虎, 常晋霞, 刘 毅, 罗杰伟, 张建武.新型含芳基哌嗪的苯并噻唑衍生物的设计、合成及活性研究[J]. 药学学报, 2013,48(8): 1259-1265
11.毕重文, 张彩霞, 李阳彪, 赵午莉, 邵荣光, 梅林, 宋丹青.环化小檗碱类似物的合成及其抗肿瘤活性研究[J]. 药学学报, 2013,48(12): 1800-1806
12.秦爱方, 李 燕, 宋宏锐, 陈晓光, 金小锋, 王 克, 张莉婧, 霍连超, 冯志强.含吡啶-2-酰肼结构的索拉非尼类似物的设计、合成及其抗肿瘤活性[J]. 药学学报, 2012,47(12): 1623-1629
13.汪燕翔, 赵午莉, 毕重文, 李阳彪, 邵荣光, 宋丹青.N-芳乙基异喹啉衍生物的合成及其抗肿瘤活性研究[J]. 药学学报, 2012,47(2): 200-205
14.曹满,余河水,宋新波,马百平.人参皂苷衍生化及其抗肿瘤构效关系研究进展[J]. 药学学报, 2012,47(7): 836-843
15.姚建文, 孙 伟, 陈 静, 徐文方.多靶点抗肿瘤药物索拉非尼结构改造的研究进展[J]. 药学学报, 2012,47(9): 1111-1119
16.蒋红平 吴亚克 郑 微 曾春玲 傅微微 范举正.薯蓣皂苷元衍生物抗肿瘤的构效关系研究[J]. 药学学报, 2011,46(5): 539-547
17.吴文, 卢骋, 陈思宇, 余聂芳.已上市和部分正在Ⅲ期临床开发中的多靶点激酶抑制剂抑酶谱及信号传导通路分析[J]. 药学学报, 2009,44(3): 242-257
18.茆勇军;李海泓;李剑峰;沈敬山.蛋白酪氨酸激酶信号转导途径与抗肿瘤药物[J]. 药学学报, 2008,43(4): 323-334
19.潘显道;王存英.天然抗肿瘤药喜树碱衍生物的研究进展[J]. 药学学报, 2003,38(9): 715-720
20.刘瑞武;尹大力;王东辉;李春;郭积玉;梁晓天.新型14β-侧链紫杉醇衍生物的合成及构效关系研究[J]. 药学学报, 1998,33(12): 910-918
21.丁平羽;于德泉.新疆藁本保肝有效成分类似物的合成研究[J]. 药学学报, 1996,31(11): 817-822
22.王瑞虹;张鸿卿;方敏;薛绍白.蛋白激酶抑制剂staurosporine增强抗癌药对肿瘤细胞的杀伤[J]. 药学学报, 1996,31(6): 411-415
23.籍秀娟;张福荣.靛玉红类化合物的抗肿瘤作用及构效关系的研究[J]. 药学学报, 1985,20(2): 137-139
24.翁尊尧;王肇瀛;严晓明.新抗肿瘤物质——恩其明(UNGEREMINE,AT-1840)及其有关化合物的合成和构效关系[J]. 药学学报, 1982,17(10): 744-749