药学学报, 2019, 54(11): 1940-1948
引用本文:
王川, 侯旭奔, 方浩. 苯并硼唑类化合物在药物化学中的应用[J]. 药学学报, 2019, 54(11): 1940-1948.
WANG Chuan, HOU Xu-ben, FANG Hao. Application of benzoxaboroles compounds in medicinal chemistry[J]. Acta Pharmaceutica Sinica, 2019, 54(11): 1940-1948.

苯并硼唑类化合物在药物化学中的应用
王川, 侯旭奔, 方浩
山东大学药学院药物化学研究所, 山东 济南 250012
摘要:
苯并硼唑(benzoxaborole)是一类含有硼原子的五元杂环化合物。近年来,苯并硼唑类化合物在药物研发中的应用越来越广,以其为骨架的药物他伐硼罗(tavaborole)和克立硼罗(crisaborole)相继被FDA批准上市。特别是,研究人员在对苯并硼唑类化合物设计探索的过程中,发现了新型的抗菌、抗寄生虫、抗肿瘤和抗炎药物。本文主要介绍苯并硼唑类化合物的性质、构效关系以及相关生物活性研究。
关键词:    苯并硼唑      他伐硼罗      克立硼罗      构效关系      生物活性     
Application of benzoxaboroles compounds in medicinal chemistry
WANG Chuan, HOU Xu-ben, FANG Hao
Department of Medicinal Chemistry, School of Pharmaceutical Science, Shandong University, Jinan 250012, China
Abstract:
Benzoxaborole is a series of compounds with five member ring and boron atom. Since the approval of crisaborole and tavaborole by FDA, benzoxaborole gained lots of research interests and become widely used in current drug discovery. Specially, benzoxaborole derivatives were found to exhibit anti-bacterial, anti-fungal, anti-protozoal, anti-tumor and anti-inflammatory activities. Here, we will review the properties of benzoxaborole, structure activity relationships as well as the recent progress in the biological activity of benzoxaborole derivatives.
Key words:    benzoxaboroles    tavaborole    crisaborole    structure activity relationships    biological activity   
收稿日期: 2019-07-20
DOI: 10.16438/j.0513-4870.2019-0577
基金项目: 国家自然科学基金资助项目(21672127).
相关功能
PDF(643KB) Free
打印本文
0
作者相关文章
王川  在本刊中的所有文章
侯旭奔  在本刊中的所有文章
方浩  在本刊中的所有文章

参考文献:
[1] Torssell K. Bromination of tolylboronic acids according to Wohl-Ziegler[J]. Ark Kemi, 1957, 10: 507-511.
[2] Adamczyk-Woźniak A, Cyrański MK, Żubrowska A, et al. Benzoxaboroles-old compounds with new applications[J]. J Organomet Chem, 2009, 694: 3533-3541.
[3] Baker SJ, Zhang YK, Akama T, et al. Discovery of a new boron-containing antifungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), for the potential treatment of onychomycosis[J]. J Med Chem, 2006, 49: 4447-4450.
[4] Guo ZR. R&D of tavaborole and crisaborole as external medication[J]. Acta Pharm Sin (药学学报), 2017, 52: 1012-1018.
[5] Nocentini A, Supuran CT, Winum JY. Benzoxaborole compounds for therapeutic uses: a patent review (2010-2018)[J]. Expert Opin Ther Pat, 2018, 28: 493-504.
[6] Akama T, Baker SJ, Zhang YK, et al. Discovery and structure-activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis[J]. Bioorg Med Chem Lett, 2009, 19: 2129-2132.
[7] Tomsho JW, Arnab P, Hall DG, et al. Ring structure and aromatic substituent effects on the pKa of the benzoxaborole pharmacophore[J]. ACS Med Chem Lett, 2012, 3: 48-52.
[8] Adamczyk-Wozniak A, Borys KM, Sporzynski A. Recent developments in the chemistry and biological applications of benzoxaboroles[J]. Chem Rev, 2015, 115: 5224-5247.
[9] Baker SJ, Tomsho JW, Benkovic SJ. Boron-containing inhibitors of synthetases[J]. Chem Soc Rev, 2011, 40: 4279-4285.
[10] Snyder H, Reedy AJ, Lennarz WJ. Synthesis of aromatic boronic acids. aldehydo boronic acids and a boronic acid analog of tyrosine1[J]. J Am Chem Soc, 1958, 80: 835-838.
[11] Rock FL, Mao W, Yaremchuk A, et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site[J]. Science, 2007, 316: 1759-1761.
[12] Elewski BE, Aly R, Baldwin SL, et al. Efficacy and safety of tavaborole topical solution, 5%, a novel boron-based antifungal agent, for the treatment of toenail onychomycosis: results from 2 randomized phase-III studies[J]. J Am Acad Dermatol, 2015, 73: 62-69.
[13] Gupta AK, Simpson FC. New therapeutic options for onychomycosis[J]. Expert Opin Pharmacother, 2012, 13: 1131-1142.
[14] O'dwyer K, Spivak AT, Ingraham K, et al. Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections[J]. Antimicrob Agents Chemother, 2015, 59: 289-298.
[15] Hu QH, Liu RJ, Fang ZP, et al. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase[J]. Sci Rep, 2013, 3: 2475.
[16] Alam MA, Arora K, Gurrapu S, et al. Synthesis and evaluation of functionalized benzoboroxoles as potential anti-tuberculosis agents[J]. Tetrahedron, 2016, 72: 3795-3801.
[17] Li X, Hernandez V, Rock FL, et al. Discovery of a potent and specific M. tuberculosis leucyl-tRNA synthetase inhibitor: (s)-3-(aminomethyl)-4-chloro-7-(2-hydroxyethoxy)benzo[c][1,2]oxaborol-1(3H)-ol (GSK656)[J]. J Med Chem, 2017, 60: 8011-8026.
[18] Jacobs RT, Plattner JJ, Keenan M. Boron-based drugs as antiprotozoals[J]. Curr Opin Infect Dis, 2011, 24: 586-592.
[19] Nocentini A, Cadoni R, Dumy P, et al. Carbonic anhydrases from Trypanosoma cruzi and Leishmania donovani chagasi are inhibited by benzoxaboroles[J]. J Enzyme Inhib Med Chem, 2018, 33: 286-289.
[20] Biamonte MA, Wanner J, Le Roch KG. Recent advances in malaria drug discovery[J]. Bioorg Med Chem Lett, 2013, 23: 2829-2843.
[21] Wells TN, Van Huijsduijnen RH, Van Voorhis WC. Malaria medicines: a glass half full[J]. Nat Rev Drug Discov, 2015, 14: 424.
[22] Zhang YK, Plattner JJ, Freund YR, et al. Synthesis and structure-activity relationships of novel benzoxaboroles as a new class of antimalarial agents[J]. Bioorg Med Chem Lett, 2011, 21: 644-651.
[23] Zhang YK, Plattner JJ, Easom EE, et al. Benzoxaborole antimalarial agents. Part 5. Lead optimization of novel amide pyrazinyloxy benzoxaboroles and identification of a preclinical candidate[J]. J Med Chem, 2017, 60: 5889-5908.
[24] Jacobs RT, Nare BA, Phillips M. State of the art in African trypanosome drug discovery[J]. Curr Top Med Chem, 2011, 11: 1255-1274.
[25] Jacobs RT, Plattner JJ, Nare B, et al. Benzoxaboroles: a new class of potential drugs for human African trypanosomiasis[J]. Future Med Chem, 2011, 3: 1259-1278.
[26] Mendes RE, Alley MRK, Sader HS, et al. Potency and spectrum of activity of AN3365, a novel boron-containing protein synthesis inhibitor, tested against clinical isolates of Enterobacteriaceae and nonfermentative Gram-negative bacilli[J]. Antimicrob Agents Chemother, 2013, 57: 2849-2857.
[27] Vermelho AB, Capaci GR, Rodrigues IA, et al. Carbonic anhydrases from Trypanosoma and Leishmania as anti-protozoan drug targets[J]. Bioorg Med Chem, 2017, 25: 1543-1555.
[28] Leung DY. New insights into atopic dermatitis: role of skin barrier and immune dysregulation[J]. Allergol Int, 2013, 62: 151-161.
[29] Ahluwalia J, Udkoff J, Waldman A, et al. Phosphodiesterase 4 inhibitor therapies for atopic dermatitis: progress and outlook[J]. Drugs, 2017, 77: 1389-1397.
[30] Essayan DM, Huang SK, Kagey-Sobotka A, et al. Differential efficacy of lymphocyte-and monocyte-selective pretreatment with a type 4 phosphodiesterase inhibitor on antigen-driven proliferation and cytokine gene expression[J]. J Allergy Clin Immunol, 1997, 99: 28-37.
[31] Paller AS, Tom WL, Lebwohl MG, et al. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4(PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults[J]. J Am Acad Dermatol, 2016, 75: 494-503.
[32] FDA. Clinical pharmacology review of crisaborole[EB/OL]. 2016[2016-01-07]. https://www.fda.gov/media/102760.
[33] Zhang J, Yang F, Qiao Z, et al. Chalcone-benzoxaborole hybrids as novel anticancer agents[J]. Bioorg Med Chem Lett, 2016, 26: 5797-5801.
[34] Zhang J, Zhang J, Hao G, et al. Design, synthesis, and structure-activity relationship of 7-propanamide benzoxaboroles as potent anticancer agents[J]. J Med Chem, 2019, 62: 6765-6784.