药学学报, 2019, 54(11): 2000-2010
引用本文:
毛霞, 陈文佳, 李鹰飞, 李玮婕, 李泰贤, 王晓月, 郭敏群, 张彦琼, 林娜. 基于网络药理学研究策略探究芍药苷对佐剂诱导型关节炎大鼠模型的治疗作用及其分子机制[J]. 药学学报, 2019, 54(11): 2000-2010.
MAO Xia, CHEN Wen-jia, LI Ying-fei, LI Wei-jie, LI Tai-xian, WANG Xiao-yue, GUO Min-qun, ZHANG Yan-qiong, LIN Na. An exploration into the therapeutic effects and molecular mechanisms of paeoniflorin in the treatment of adjuvant-induced arthritis rats by a network pharmacology-based research strategy[J]. Acta Pharmaceutica Sinica, 2019, 54(11): 2000-2010.

基于网络药理学研究策略探究芍药苷对佐剂诱导型关节炎大鼠模型的治疗作用及其分子机制
毛霞, 陈文佳, 李鹰飞, 李玮婕, 李泰贤, 王晓月, 郭敏群, 张彦琼, 林娜
中国中医科学院中药研究所, 北京 100700
摘要:
芍药苷(paeoniflorin,PAE)是中药白芍的主要活性成分,也是抗类风湿关节炎(rheumatoid arthritis,RA)中成药白芍总苷胶囊的主要成分,具有抗炎和免疫调节等多种药理活性,然而其潜在的药理机制尚不明确。本研究首先基于网络药理学研究策略,预测白芍候选靶标,并建立白芍候选靶标-已知RA相关基因相互作用网络,通过计算网络中各节点的拓扑特征值(包括连接度、紧密度、介度),筛选出白芍干预RA相关失衡网络的关键候选靶标。进一步的功能挖掘发现,白芍的关键候选靶标显著富集于多条与RA病理环节相关通路,其中包括与软骨破坏相关的IL1B-TNF-TLR2-JUN-MMP1-MMP3通路。分子对接虚拟计算结果表明,白芍所含主要成分PAE与MMP1和MMP3有很强的亲和力。进而,本研究通过佐剂诱导型关节炎(adjuvant-induced arthritis,AIA)大鼠模型进行实验验证,发现PAE对AIA大鼠关节炎严重度有明显改善作用,可显著改善其红肿等症状,降低AIA模型组大鼠的关节评分、右后肢肿胀度,升高体重和痛阈(均P<0.05);ELISA检测表明,PAE可显著抑制AIA模型组大鼠血清炎性因子IL-1β、TNF-α、IL-6、IL-17和IFN-γ水平的异常升高(均P<0.001);Western blot分析表明,PAE可显著降低AIA大鼠受累踝关节组织中MMP1和MMP3蛋白(均P<0.001)的蛋白表达水平(本研究有关动物的所有操作均按照中国医学科学院实验动物护理中心的伦理标准进行)。结果显示,PAE可通过调控IL1B-TNF-TLR2-JUN-MMP1-MMP3通路而发挥缓解关节软骨损伤、降低RA疾病严重度的作用。本研究增加了中药白芍及其有效成分抗RA药理作用的新认识,也为相关研究提供了新方向和新思路的参考。
关键词:    芍药苷      类风湿关节炎      网络药理学      分子对接      药理机制     
An exploration into the therapeutic effects and molecular mechanisms of paeoniflorin in the treatment of adjuvant-induced arthritis rats by a network pharmacology-based research strategy
MAO Xia, CHEN Wen-jia, LI Ying-fei, LI Wei-jie, LI Tai-xian, WANG Xiao-yue, GUO Min-qun, ZHANG Yan-qiong, LIN Na
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
Abstract:
Paeoniflorin (PAE), the major active compounds of Chinese herbs Radix Paeoniae Alba and Chinese patent drug "Total Glucosides of Paeony Capsules", which is effective in the treatment of rheumatoid arthritis (RA), exerted multi-pharmacological activities, such as anti-inflammatory, immune-regulatory, etc. However, its potential action mechanisms remain unclear. Herein, we predicted the putative targets of Radix Paeoniae Alba and constructed an interaction network of putative targets of Radix Paeoniae Alba and known RA-related genes. A list of key putative targets was identified by calculating their topological features (degree, node betweenness and closeness) in the above pharmacological network. Importantly, pathway enrichment analysis revealed that these key putative targets were significantly enriched in several RA-related pathways, including cartilage damage-related IL1B-TNF-TLR2-JUN-MMP1-MMP3 signaling pathway. Further molecular docking simulation showed that PAE, the major active compounds of Radix Paeoniae Alba, has strong binding affinity with MMP1 and MMP3 proteins. Next, in vivo experiments based on the adjuvant-induced arthritis (AIA) animal models showed that PAE significantly alleviated the disease severity and the syndromes of severe redness or swelling in hind limbs of AIA rats, including decreasing the arthritis score, the diameter of the limbs, and elevating body weight and pain thresholds (all P<0.05). ELISA assay indicated that PAE obviously suppressed the abnormal up-regulation of serum inflammatory factors including IL-1β, TNF-α, IL-6, IL-17 and IFN-γ in AIA rats (all P<0.001). Western blot analysis found that PAE simultaneously modulated the abnormal up-regulation of MMP1 and MMP3 proteins in the ankle tissues of AIA rats (all P<0.001) (all procedures in the current study were performed in accordance with the ethical standards of the Center for Laboratory Animal Care, China Academy of Chinese Medical Sciences). In conclusion, PAE alleviated the cartilage damage and disease severity in the progressive process of RA via regulating the IL1B-TNF-TLR2-JUN-MMP1-MMP3 pathway. This study provided the theoretical basis of the PAE for its immune-regulatory effects, and as well provided references for the action mechanism study of extract compounds of Chinese herbs.
Key words:    paeoniflorin    rheumatoid arthritis    network pharmacology    molecular docking    pharmacological mechanism   
收稿日期: 2019-05-31
DOI: 10.16438/j.0513-4870.2019-0430
基金项目: 国家自然科学基金重点项目(81630107,81974526);北京市自然科学基金资助项目(7192139);中央级公益性科研院所基本科研业务费专项资金资助(L2017018);中国中医科学院中医药“一带一路”合作专项(GH2017-06).
相关功能
PDF(931KB) Free
打印本文
0
作者相关文章
毛霞  在本刊中的所有文章
陈文佳  在本刊中的所有文章
李鹰飞  在本刊中的所有文章
李玮婕  在本刊中的所有文章
李泰贤  在本刊中的所有文章
王晓月  在本刊中的所有文章
郭敏群  在本刊中的所有文章
张彦琼  在本刊中的所有文章
林娜  在本刊中的所有文章

参考文献:
[1] Myasoedova E, Crowson CS, Kremers HM, et al. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955-2007[J]. Arthritis Rheum, 2010, 62: 1576-1582.
[2] Abbasi M, Mousavi MJ, Jamalzehi S, et al. Strategies toward rheumatoid arthritis therapy; the old and the new[J]. J Cell Physiol, 2019, 234: 10018-10031.
[3] Viatte S, Barton A. Genetics of rheumatoid arthritis susceptibility, severity, and treatment response[J]. Semin Immunopathol, 2017, 39: 395-408.
[4] Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review[J]. JAMA, 2018, 320: 1360-1372.
[5] Yu XR, Cao F, Chen ZY. Application progress of TGP in autoimmune diseases[J]. Acta Chin Med Pharmacol (中医药学报), 2019, 47: 127-130.
[6] Su J, Zhang P, Zhang JJ, et al. Effects of total glucosides of paeony on oxidative stress in the kidney from diabetic rats[J]. Phytomedicine, 2010, 17: 254-260.
[7] Zhang LL, Wei W, Wang P, et al. Paeoniflorin suppresses inflammatory mediator production and regulates G protein-coupled signaling in fibroblast-like synoviocytes of collagen induced arthritic rats[J]. Inflamm Res, 2008, 57: 388-395.
[8] Lai X, Wei J, Ding X. Paeoniflorin antagonizes TNF-α-induced L929 fibroblastoma cells apoptosis by inhibiting NF-κBp65 activation[J]. Dose Response, 2018, 16: 1559325818774977.
[9] Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets[J]. Nucleic Acids Res, 2008, 36: D901-D906.
[10] Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders[J]. Nucleic Acids Res, 2005, 33: D514-D517.
[11] Becker KG, Barnes KC, Bright TJ, et al. The genetic association database[J]. Nat Genet, 2004, 36: 431-432.
[12] Wixon J, Kell D. The Kyoto encyclopedia of genes and genomes—KEGG[J]. Yeast, 2000, 17: 48-55.
[13] G Jr Dennis, Sherman BT, Hosack DA, et al. DAVID: database for annotation, visualization, and integrated discovery[J]. Genome Biol, 2003, 4: P3.
[14] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4: 44-57.
[15] Hsin KY, Matsuoka Y, Asai Y, et al. systemsDock: a web server for network pharmacology-based prediction and analysis[J]. Nucleic Acids Res, 2016, 44:W507-W513.
[16] Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. J Comput Chem, 2010, 31: 455-461.
[17] Hsin KY, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One, 2013, 8: e83922.
[18] Morris GM, Huey R, Olson AJ. Using AutoDock for ligand-receptor docking[J]. Curr Protoc Bioinformatics, 2008, Chapter 8: Unit 8. 14.
[19] Zhang Y, Mao X, Guo Q, et al. Pathway of PPAR-gamma coactivators in thermogenesis: a pivotal traditional Chinese medicine-associated target for individualized treatment of rheumatoid arthritis[J]. Oncotarget, 2016, 7: 15885-15900.
[20] Guo Q, Mao X, Zhang Y, et al. Guizhi-Shaoyao-Zhimu decoction attenuates rheumatoid arthritis partially by reversing inflammation-immune system imbalance[J]. J Transl Med, 2016, 14: 165.
[21] Brenner M, Meng HC, Yarlett NC, et al. The non-major histocompatibility complex quantitative trait locus Cia10 contains a major arthritis gene and regulates disease severity, pannus formation, and joint damage[J]. Arthritis Rheum, 2005, 52: 322-332.
[22] Mossiat C, Laroche D, Prati C, et al. Association between arthritis score at the onset of the disease and long-term locomotor outcome in adjuvant-induced arthritis in rats[J]. Arthritis Res Ther, 2015, 17: 184.
[23] Shinoda K, Hruby VJ, Porreca F. Antihyperalgesic effects of loperamide in a model of rat neuropathic pain are mediated by peripheral delta-opioid receptors[J]. Neurosci Lett, 2007, 411: 143-146.
[24] Baddack-Werncke U, Busch-Dienstfertig M, González-Rodríguez S, et al. Cytotoxic T cells modulate inflammation and endogenous opioid analgesia in chronic arthritis[J]. J Neuroinflammation, 2017, 14: 30.
[25] Bardin L, Malfetes N, Newman-Tancredi A, et al. Chronic restraint stress induces mechanical and cold allodynia, and enhances inflammatory pain in rat: relevance to human stress-associated painful pathologies[J]. Behav Brain Res, 2009, 205: 360-366.
[26] Zhu L, Wei W, Zhen YQ. Effect and mechanism of action of total glucosides of paeony on synoviocytes from rats with collagen-induced arthritis[J]. Acta Pharm Sin (药学学报), 2006, 41: 166-170.
[27] Zheng YQ, Wei W, Zhu L, et al. Effects and mechanisms of paeoniflorin, a bioactive glucoside from paeony root, on adjuvant arthritis in rats[J]. Inflamm Res, 2007, 56: 182-188.
[28] Zhang Y, Bai M, Zhang B, et al. Uncovering pharmacological mechanisms of Wu-tou decoction acting on rheumatoid arthritis through systems approaches: drug-target prediction, network analysis and experimental validation[J]. Sci Rep, 2015, 5: 9463.
[29] Hopkins AL. Network pharmacology[J]. Nat Biotechnol, 2007, 25: 1110-1111.
[30] Konttinen YT, Ainola M, Valleala H, et al. Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis[J]. Ann Rheum Dis, 1999, 58: 691-697.
[31] Yoshihara Y, Nakamura H, Obata K, et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis[J]. Ann Rheum Dis, 2000, 59: 455-461.
[32] Cawston T. Matrix metalloproteinases and TIMPs: properties and implications for the rheumatic diseases[J]. Mol Med Today, 1998, 4: 130-137.
[33] Goldring MB. The role of the chondrocyte in osteoarthritis[J]. Arthritis Rheum, 2000, 43: 1916-1926.
[34] Nagase H. Activation mechanisms of matrix metalloproteinases[J]. Biol Chem, 1997, 378: 151-160.
[35] Tseng WY, Huang YS, Chiang NY, et al. Increased soluble CD4 in serum of rheumatoid arthritis patients is generated by matrix metalloproteinase (MMP)-like proteinases[J]. PLoS One, 2013, 8: e63963.
[36] Wong CK, Chen DP, Tam LS, et al. Effects of inflammatory cytokine IL-27 on the activation of fibroblast-like synoviocytes in rheumatoid arthritis[J]. Arthritis Res Ther, 2010, 12: R129.
[37] Hammaker DR, Boyle DL, Inoue T, et al. Regulation of the JNK pathway by TGF-beta activated kinase 1 in rheumatoid arthritis synoviocytes[J]. Arthritis Res Ther, 2007, 9: R57.
[38] Page K, Ledford JR, Zhou P, et al. A TLR2 agonist in German cockroach frass activates MMP-9 release and is protective against allergic inflammation in mice[J]. J Immunol, 2009, 183: 3400-3408.
[39] Joosten LA,Koenders MI, Smeets RL, et al. Toll-like receptor 2 pathway drives streptococcal cell wall-induced joint inflammation: critical role of myeloid differentiation factor 88[J]. J Immunol, 2003, 171: 6145-6153.
[40] Zhen N, Lu HQ, Lan SM, et al. Influence of total glucosides of paeony on serum levels of MMPs expression in patients with different syndromes of rheumatoid arthritis[J]. Pharm Today (今日药学), 2015, 25: 781-783.
[41] Gu J. The Therapeutic Effects And Molecular Mechanism of Caulis Sinomenii In Combination With Radix Paeoniae Alba In The Treatment of Rheumatoid Arthritis With Cold Syndrome (青风藤配伍白芍对类风湿关节炎风寒湿痹证的作用及机制研究)[D]. Hunan: Hunan university of traditional Chinese medicine, 2016.
[42] Zhou G, Liang GC, Han XY, et al. Synthesis, biological activity and molecular docking research of N-{[(4-oxo-thiochroman-3-yl) phenyl]-methy} acetamide derivatives as α-glucosidase inhibitors[J]. Acta Pharm Sin (药学学报), 2016, 51: 93-99.
[43] Song XL, Zhou W, Chen Chao, et al. Study on material base of Ligusticum wallichii for treating brain ischemia and its molecular mechanism based on molecular docking[J]. China J Chin Mater Med (中国中药杂志), 2015, 40: 2195-2198.
[44] Qi XB, Zhen H, Fang HS. Research progress on the docking of polypeptide and proteins[J]. Comp Applied Chem (计算机与应用化学), 2010, 27: 747-750.
相关文献:
1.庄莉, 翟园园, 姚卫峰, 徐佳, 冯丽, 包贝华, 曹雨诞, 张丽, 丁安伟.基于网络药理学的二至丸对肾脏保护作用的机制研究[J]. 药学学报, 2019,54(5): 877-885
2.李冰涛, 翟兴英, 李佳, 涂珺, 张启云, 徐国良, 黄丽萍, 邵峰, 朱卫丰, 刘荣华.基于网络药理学葛根解热作用机制研究[J]. 药学学报, 2019,54(8): 1409-1416
3.张王宁, 高耀, 李科, 钞建宾, 秦雪梅, 李爱平.基于网络药理学的黄芪总黄酮治疗肾病综合征的机制研究[J]. 药学学报, 2018,53(9): 1429-1441
4.时悦, 姚璎珈, 蔺莹, 梁喜才, 倪颖男, 吴雨桐, 杨静娴.基于网络药理学的开心散治疗阿尔茨海默病的作用机制分析[J]. 药学学报, 2018,53(9): 1458-1466
5.颜磊, 何小燕, 高耀, 向欢, 徐向平, 黄胜, 颜冬兰, 秦雪梅, 田俊生.基于网络药理学的驴胶补血颗粒升高白细胞作用机制研究[J]. 药学学报, 2018,53(10): 1660-1669
6.吴丹, 高耀, 向欢, 邢婕, 韩雨梅, 秦雪梅, 田俊生.基于网络药理学的柴胡抗抑郁作用机制研究[J]. 药学学报, 2018,53(2): 210-219
7.李磊, 图门巴雅尔, 李培锋, 刘畅, 李升和, 宁康健, 姜锦鹏.牛磺鹅去氧胆酸抗炎作用机制的网络药理学研究[J]. 药学学报, 2018,53(12): 2064-2075
8.孙莉敏, 刘丽芳, 朱华旭, 朱宝杰, 张启春.基于网络药理学的黄连解毒汤治疗阿尔兹海默症的作用机制研究[J]. 药学学报, 2017,52(8): 1268-1275
9.韩彦琪, 许浚, 张喜民, 张铁军, 任一杰, 刘昌孝.基于网络药理学的元胡止痛滴丸治疗原发性痛经的作用机制研究[J]. 药学学报, 2016,51(3): 380-387
10.程彬峰, 侯媛媛, 姜 民, 赵振营, 董林毅, 白 钢.基于网络药理学的清肺消炎丸抗炎机制的初步研究[J]. 药学学报, 2013,48(5): 686-693