药学学报, 2019, 54(11): 2093-2099
引用本文:
李磊, 沈岚, 王晓柠, 林晓, 洪燕龙, 冯怡. 基于软材物性参数的黄芪总皂苷生物黏附微丸的制备和黏附性能评价[J]. 药学学报, 2019, 54(11): 2093-2099.
LI Lei, SHEN Lan, WANG Xiao-ning, LIN Xiao, HONG Yan-long, FENG Yi. Bioadhesive pellets of astragalosides: preparation and adhesive evaluation based on the physical properties of wet mass[J]. Acta Pharmaceutica Sinica, 2019, 54(11): 2093-2099.

基于软材物性参数的黄芪总皂苷生物黏附微丸的制备和黏附性能评价
李磊1, 沈岚1,2, 王晓柠3, 林晓1,2, 洪燕龙4, 冯怡2
1. 上海中医药大学 中药学院, 上海 201203;
2. 上海中医药大学 中药现代制剂技术教育部工程研究中心, 上海 201203;
3. 上海中医药大学 上海高校中医内科学E-研究院, 上海 201203;
4. 上海中医药大学 上海中医健康服务协同创新中心, 上海 201203
摘要:
生物黏附制剂是以天然或合成高分子材料为制剂载体,口服给药后可延长在肠道内滞留时间,具有释药速率可控、促进药物黏膜吸收等优点。本文基于软材的物性参数和黏附性能,提出一种有别于常规筛选最优处方的黏附处方筛选方法,并以该法为指导,采用挤出滚圆法制备黄芪总皂苷生物黏附微丸;基于小动物活体成像技术和建立的猪胃黏蛋白模型,对黏附微丸进行体内和体外黏附性能评价。通过对软材的物性参数与黏附微丸的成型性和黏附性的研究,确定了5种物性参数:硬度(Ha)、黏附性(Ad)、弹性(Sp)、内聚性(Co)和咀嚼性(Ch),作为筛选最优处方的考察指标;基于主成分分析统计学方法,建立综合评价模型对拟定的黏附处方进行综合排名,得出最优的处方:微晶纤维素:(壳聚糖∶卡波姆940=2∶1),其中黏附材料用量占辅料用量20%,药辅比为1∶4。所有动物实验获得上海中医药大学伦理学委员会批准。体内和体外黏附性能评价结果表明,与黄芪总皂苷普通微丸相比,生物黏附微丸具有明显肠道滞留优势,证实了基于软材物性参数建立的黏附处方筛选方法是科学、可靠的。
关键词:    黄芪总皂苷      生物黏附微丸      软材      物性参数      猪胃黏蛋白      黏附性     
Bioadhesive pellets of astragalosides: preparation and adhesive evaluation based on the physical properties of wet mass
LI Lei1, SHEN Lan1,2, WANG Xiao-ning3, LIN Xiao1,2, HONG Yan-long4, FENG Yi2
1. School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
2. Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
3. E-institute of Chinese Traditional Internal Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
4. Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Abstract:
Bioadhesive preparation can be attached to specific sites to control drug release rate, increase drug concentration and increase efficacy, which is based on natural or synthetic polymer material. In this paper, based on the physical properties of wet mass, a method for screening adhesion formulation was proposed, which was different from conventional way of screening optimal formulation, and astragalosides loaded bioadhesive pellets were prepared by extrusion-spheronization method (extrusion speed 30 r·min-1, spheronization speed 808 r·min-1, spheronization time 7.5 min) based on this formulation screening method, small living animal imaging technology and mucin from porcine stomach model were used to evaluate the in vivo and in vitro adhesiveness behaviour of the pellets. According to the relationship between the physical properties of wet mass and the formability and adhesiveness of bioadhesive pellets, five key physical properties hardness (Ha), adhesiveness (Ad), springiness (Sp), cohesiveness (Co), chewiness (Ch) were selected as the index of screening optimal formulation, therefore a comprehensive evaluation model was established, which based on principal component analysis, to did digital ranking for these proposed adhesion formulation, the optimal formulation was determined:microcrystalline cellulose:(chitosan:Carbomer 940=2:1), the adhesive material dosage accounted for 20% of the excipient dosage, and the ratio of drugs to excipients was 1:4. All animal experiments have been approved by Ethics Committee of Shanghai University of Traditional Chinese Medicine. The in vivo and in vitro adhesive evaluation results showed the pellets had a clear advantage in intestinal adhesion over normal pellets, its also proved the scientificity and reliability of the method of screening bioadhesive formulation.
Key words:    astragalosides    bioadhesive pellet    wet mass    physical property    mucin from porcine stomach    adhesiveness   
收稿日期: 2019-07-26
DOI: 10.16438/j.0513-4870.2019-0604
基金项目: 上海市中医药事业发展三年行动计划(ZY3-CCCX-3-5001).
相关功能
PDF(482KB) Free
打印本文
0
作者相关文章
李磊  在本刊中的所有文章
沈岚  在本刊中的所有文章
王晓柠  在本刊中的所有文章
林晓  在本刊中的所有文章
洪燕龙  在本刊中的所有文章
冯怡  在本刊中的所有文章

参考文献:
[1] Qi L, Yu T, Li P, et al. Quality evaluation of Radix Astragali through a simultaneous determination of six major active isoflavonoids and four main saponins by high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors[J]. J Chromatogr A, 2006, 1134: 162-169.
[2] Xie W, Zhao Y, Du L. Emerging approaches of traditional Chinese medicine formulas for the treatment of hyperlipidemia[J]. J Ethnopharmacol, 2012, 140: 345-367.
[3] Yang Q, Chen K, Lu S, et al. Research progress on mechanism of action of Radix Astragalus in the treatment of heart failure[J]. Chin J Integr Med (中国结合医学杂志), 2012, 18: 235-240.
[4] Chen X, Peng LH, Shan YH, et al. Astragaloside IV-loaded nanoparticle-enriched hydrogel induces wound healing and anti-scar activity through topical delivery[J]. Int J Pharm, 2013, 447: 171-181.
[5] Gu YC, Wang GG, Fawcett P. Determination of astragaloside Ⅳ in rat plasma by liquid chromatography electrospray ionization mass spectrometry[J]. J Chromatogr B, 2004, 801: 258-288.
[6] Xu M, Yin J, Xie L, et al. Pharmacokinetics and tolerance of total astragalosides after intravenous infusion of astragalosides injection in healthy Chinese volunteers[J]. Phytomedicine, 2013, 20: 1105-1111.
[7] Li Q, Huang W, Yang J, et al. Gastric retention pellets of edaravone with enhanced oral bioavailability: absorption mechanism, development, and in vitro/in vivo evaluation[J]. Eur J Pharm Sci, 2018, 119: 62-69.
[8] Abd-Elsalam WH, ElKasabgy NA. Mucoadhesive olaminosomes: a novel prolonged release nanocarrier of agomelatine for the treatment of ocular hypertension[J]. Int J Pharm, 2019, 560: 235-245.
[9] Laffleur F, Röttges S. Mucoadhesive approach for buccal application: preactivated chitosan[J]. Eur Polym J, 2019, 113: 60-66.
[10] Li Y, Zhang Y, Zhu CY. Pharmacokinetics and correlation between in vitro release and in vivo absorption of bio-adhesive pellets of Panax notoginseng saponins[J]. Chin J Nat Med, 2017, 15: 142-151.
[11] Li GF, Zhao MM, Su XY, et al. Preparation and in vitro-in vivo evaluation of intestinal retention pellets of berberine chloride to enhance hypoglycemic and lipid-lowing efficacy[J]. Asian J Pharm Sci, 2019, 14: 559-568.
[12] Vervaet C, Baert L, Remon JP. Extrusion-spheronisation a literature review[J]. Int J Pharm, 1995, 116: 131-146.
[13] Gao Y, Hong Y, Xian J, et al. A protocol for the classification of wet mass in extrusion-spheronization[J]. Eur J Pharm Biopharm, 2013, 85: 996-1005.
[14] Xu M, Sun M, Qiao H, et al. Preparation and evaluation of colon adhesive pellets of 5-aminosalicylic acid[J]. Int J Pharm, 2014, 468: 165-171.
[15] Thapa P, Thapa R, Choi DH, et al. Effects of pharmaceutical processes on the quality of ethylcellulose coated pellets: quality by design approach[J]. Powder Technol, 2018, 339: 25-38.
[16] Huang HP, Liu CX, Li YL, et al. Study on absorption kinetics of astragaloside Ⅳ in rat’s intestines[J]. China J Chin Mater Med (中国中药杂志), 2008, 33: 1609-1611.
[17] Grabnar I, Bogataj M, Mrhar A. Influence of chitosan and polycarbophil on permeation of a model hydrophilic drug into the urinary bladder wall[J]. Int J Pharm, 2003, 256: 167-173.
[18] Zhao Z, Du SY, Lu Y, et al. In vitro and in vivo adhesion properties evaluation Carbomer six kinds bioadhesive material[J]. Chin Pharm J (中国药学杂志), 2014, 49: 2188-2192.
[19] Ofori-Kwakye K, Fell JT. Biphasic drug release: the permeability of films containing pectin, chitosan and HPMC[J]. Int J Pharm, 2001, 226: 139-145.
[20] Litster J, Ennis BJ. The Science and Engineering of Granulation Processes[M]//Dordrecht: Kluwer Academic Publishers, 2004: 4-10.