药学学报, 2019, 54(11): 2100-2105
引用本文:
李婷, 姜丹, 胡小松, 常晓茜, 许贞, 巩颖, 华国栋, 刘春生. 基于高通量测序技术对市售柏子仁表面真菌多样性的研究[J]. 药学学报, 2019, 54(11): 2100-2105.
LI Ting, JIANG Dan, HU Xiao-song, CHANG Xiao-xi, XU Zhen, GONG Ying, HUA Guo-dong, LIU Chun-sheng. Study on the surface fungus diversity of commercially Platycladi semen based on high-throughput sequencing technology[J]. Acta Pharmaceutica Sinica, 2019, 54(11): 2100-2105.

基于高通量测序技术对市售柏子仁表面真菌多样性的研究
李婷1, 姜丹1, 胡小松1, 常晓茜1, 许贞1, 巩颖2, 华国栋2, 刘春生1
1. 北京中医药大学中药学院, 北京 102488;
2. 北京中医药大学东方医院药学部, 北京 100078
摘要:
为了分析市售柏子仁表面真菌群落的结构组成,揭示其表面真菌生物多样性和结构差异。收集了河南、山东、香港3个地区的柏子仁药材,对其进行DNA抽提,并对DNA中ITS片段进行PCR扩增,PCR产物经质检合格后进行Illumina Hiseq 2500平台上Miseq测序,得到序列OTU聚类后进行生物信息学分析。三个地区的柏子仁样品肉眼均观察不到微生物群落,测序结果显示其表面微生物群落均具有较高的生物多样性,但物种组成上存在明显差异。7份柏子仁样品得到345 947条有效序列,划分为267个OTU聚类,分3门,18纲,40目,82科,120属,191种真菌。在属水平上,曲霉属丰度占比最高,达到(93.36±6.01)%,为优势菌属。7份样品均被黄曲霉菌污染,污染程度分别为14.58%、15.98%、17.64%、16.44%、0.97%、23.39%、18.86%。除5号样品筛曲霉丰度占比较高,其余6份样品均以黑曲霉、烟曲霉以及黄曲霉为核心菌群。通过分析不同产地柏子仁真菌分布的多样性,充分了解了柏子仁表面真菌的情况,为黄曲霉菌的污染及其毒素污染进行早期的风险预警奠定基础,为柏子仁质量安全提供理论依据。
关键词:    高通量测序      柏子仁      黄曲霉菌      真菌      多样性     
Study on the surface fungus diversity of commercially Platycladi semen based on high-throughput sequencing technology
LI Ting1, JIANG Dan1, HU Xiao-song1, CHANG Xiao-xi1, XU Zhen1, GONG Ying2, HUA Guo-dong2, LIU Chun-sheng1
1. School of Chinese Medica, Beijing University of Chinese Medicine, Beijing 102488, China;
2. Department of Pharmacy, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100078, China
Abstract:
The structural composition of the surface fungal community of commercially Platycladi semen was analyzed to reveal the surface fungal biodiversity and structural differences. Platycladi semen was collected from Henan, Shandong and Hong Kong, their DNA was extracted, ITS fragments in DNA were amplified by PCR. Miseq was sequenced on Illumina Hiseq 2500 platform after the PCR products were qualified for quality inspection. The sequence OTU cluster was obtained and bioinformatics analysis was carried out. Microbial communities were not observed in the eyes of the Platycladi semen in the three regions. Sequencing results showed that the surface microbial community had high biodiversity, but there were significant differences in species composition. Seven samples o Platycladi semen obtained 345 947 valid sequences, which were divided into 267 OTUs, 3 phylums. 18 classes, 40 orders, 82 families, 120 genus, 191 species fungi. At the genus level, Aspergillus is the dominant species, accounting for the highest proportion, reaching (93.36 ±6.01)%. Seven samples were contaminated by Aspergillus flavus, and the pollution levels were 14.58%, 15.98%, 17.64%, 16.44%, 0.97%, 23.39% and 18.86%. Except sample No. 5, Aspergillus cibarius was the most abundant, the other six samples were Aspergillus niger, Aspergillus fumigatus and Aspergillus flavus as the core microflora. By analyzing the diversity of fungi distribution in different habitats, we can fully understand the fungi on the surface of Platycladi semen, lay a foundation for early risk warning of Aspergillus flavus contamination and its aflatoxin contamination, and provide a theoretical basis for the quality and safety of Platycladi semen.
Key words:    high throughput sequencing    Platycladi semen    Aspergillus flavus    fungi    diversity   
收稿日期: 2019-06-26
DOI: 10.16438/j.0513-4870.2019-0512
基金项目: 国家自然科学基金资助项目(8177141360).
相关功能
PDF(470KB) Free
打印本文
0
作者相关文章
李婷  在本刊中的所有文章
姜丹  在本刊中的所有文章
胡小松  在本刊中的所有文章
常晓茜  在本刊中的所有文章
许贞  在本刊中的所有文章
巩颖  在本刊中的所有文章
华国栋  在本刊中的所有文章
刘春生  在本刊中的所有文章

参考文献:
[1] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (中华人民共和国药典一部)[S]. Part 1. Beijing: China Medical Science Press, 2015, 247.
[2] Lu J, Lu S. Research progress of Platycladi seed[J]. J Liaoning Univ Tradit Chin Med (辽宁中医药大学学报), 2013, 15: 247-250.
[3] Suo JH, Mou HJ, Liu XJ, et al. Improving effect and mechanism of Chinese arborvitae glycosides on the behavior of rat model of Alzheimer’s disease[J]. Chin J Comp Med (中国比较医学杂志), 2018, 28: 84-88, 95.
[4] Xiao W, Liu ZL, Li ZX, et al. Study on slumber improvement by Platycladi seed extract[J]. Food Sci (食品科学), 2007, (07): 475-479.
[5] Angeli D, Sare AR, Jijakli MH, et al. Insights gained from metagenomic shotgun sequencing of apple fruit epiphytic microbiota[J]. Postharvest Biol Technol, 2019, 153: 96-106.
[6] Sebastien M, Margarita MM, Haissam JM, et al. Biological control in the microbiome era: challenges and opportunities[J]. Biological Control, 2015, 89: 98-108.
[7] Li T, Hu XS, Gong Y, et al. Research progress on prevention and control measures of aflatoxin in Chinese medicinal materials[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2019, 25: 228-234.
[8] Kang J, Zhang SY, Han T, et al. Microbial diversity and community structure characteristics of Yam rhizosphere soil at different development periods[J]. Biotech Bull (生物技术通报), 2019: 1-8[2019-06-14]. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2018-1041.
[9] Shen YM, Nie J, Dong YF, et al. Compositional shifts in the surface fungal communities of apple fruits during cold storage[J]. Postharvest Biol Technol, 2018, 144: 55-62.
[10] Song XH, Tan J, Li LY, et al. Illumina high-throughput sequencing reveals fungal community composition and diversity in root rot of Coptis chinensis in rhizosphere soil[J]. Chin Tradit Herb Drugs (中草药), 2018, 49: 5396-5403.
[11] Zhang TT, Liang YM, Xu L, et al. Study on DNA molecular identification of mix samples of five species of Baitouweng medicinal materials based on high-throughput sequencing technology[J]. Acta Pharm Sin (药学学报), 2018, 53: 1918-1923.
[12] Xu YH, Wang YL, Wang DF, et al. Effect of Huangqin Tang on the gut microbiota in rats with ulcerative colitis model determined by high-throughput sequencing[J]. Acta Pharm Sin (药学学报), 2017, 52: 1673-1682.
[13] Xue M, Duan JP, Kang S. The identification for Seman Platycladi and its adulterants[J]. Chin J Med Guide (中国医药导刊), 2018, 20: 225-227.
[14] Vigneshwari A, Rakk D, Nemeth A, et al. Host metabolite producing endophytic fungi isolated from Hypericum perforatum[J]. PLoS One, 2019, 14: e0217060.
[15] Aregbe AY, Mu TH, Sun HN. Effect of different pretreatment on the microbial diversity of fermented potato revealed by high-throughput sequencing[J]. Food Chem, 2019, 290: 125-134.
[16] Abdelfattah A, Wisniewski M, Droby S, et al. Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase[J]. Hort Res, 2016, 3: 16047.
[17] Guo MY, Pang XH. Research progress on identification of Aspergillus fungi in traditional Chinese medicinal materials[J]. Chin Tradit Herb Drugs (中草药), 2018, 49: 3933-3941.
[18] Makhlouf J, Carvajal-Campos A, Querin A, et al. Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in spices marketed in Lebanon[J]. Sci Rep, 2019, 5: 5263.
[19] Liu J, Deng JC, Yang CQ, et al. Fungal diversity in field mold-damaged soybean fruits and pathogenicity identification based on high-throughput rDNA sequencing[J]. Front Microbiol, 2017, 8: 779.
相关文献:
1.陈静, 许贞, 张雪, 李妍芃, 刘春生.不同产地甘草内生真菌多样性及分离条件研究[J]. 药学学报, 2019,54(2): 373-379